一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于可穿戴設(shè)備的日常壓力狀態(tài)評估研究

趙湛 韓璐 方震 陳賢祥 杜利東 劉正奎

趙湛, 韓璐, 方震, 陳賢祥, 杜利東, 劉正奎. 基于可穿戴設(shè)備的日常壓力狀態(tài)評估研究[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
引用本文: 趙湛, 韓璐, 方震, 陳賢祥, 杜利東, 劉正奎. 基于可穿戴設(shè)備的日常壓力狀態(tài)評估研究[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
ZHAO Zhan, HAN Lu, FANG Zhen, CHEN Xianxiang, DU Lidong, LIU Zhengkui. Research on Daily Stress Detection Based on Wearable Device[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
Citation: ZHAO Zhan, HAN Lu, FANG Zhen, CHEN Xianxiang, DU Lidong, LIU Zhengkui. Research on Daily Stress Detection Based on Wearable Device[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120

基于可穿戴設(shè)備的日常壓力狀態(tài)評估研究

doi: 10.11999/JEIT170120
基金項(xiàng)目: 

國家自然科學(xué)基金(61302033),北京市自然科學(xué)基金(Z160003),國家重點(diǎn)研發(fā)計(jì)劃(2016YFC1304302)

Research on Daily Stress Detection Based on Wearable Device

Funds: 

The National Natural Science Foundation of China (61302033), The Key Project of Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

  • 摘要: 現(xiàn)代生活普遍壓力較大,容易引起消極痛苦的應(yīng)激,導(dǎo)致不良情緒甚至滋生各類慢性病。心理專家需要了解個體的壓力狀態(tài),從而開展對應(yīng)性心理疏導(dǎo)和治療。傳統(tǒng)心理學(xué)自評法存在一定的主觀性;基于生理多導(dǎo)儀的壓力狀態(tài)評估法,受設(shè)備體積所限無法用于日常壓力狀態(tài)評估。針對上述問題,該文采用可穿戴式傳感設(shè)備實(shí)時采集個體生理信號,利用心理和生理的伴生關(guān)系,對個體的心理壓力進(jìn)行長期實(shí)時評估。同時通過蒙特利爾影像應(yīng)激實(shí)驗(yàn)(MIST)誘發(fā)出被試平靜、輕微及高度壓力3種壓力狀態(tài),此實(shí)驗(yàn)范式同時包含認(rèn)知負(fù)荷精神壓力因素與社會評價(jià)心理壓力因素,與日常真實(shí)生活更為接近。該文共采集39名健康被試的實(shí)驗(yàn)數(shù)據(jù),通過對數(shù)據(jù)的特征值提取等預(yù)處理,結(jié)合隨機(jī)森林算法對最優(yōu)特征子集進(jìn)行選擇,采用支持向量機(jī)(SVM)分類算法對3種壓力狀態(tài)進(jìn)行分類預(yù)測。實(shí)驗(yàn)結(jié)果表明,通過隨機(jī)森林特征選擇優(yōu)化后的SVM分類,與通用的單一SVM分類算法相比,具有更好的分類識別效果,對3種壓力狀態(tài)的分類準(zhǔn)確率可從78%提高至84%。
  • CACIOPPO J T and TASSINARY L G. Principles of Psychophysiology: Physical, Social, and Inferential Elements [M]. New York, NY, US, Cambridge University Press, 1990: 10-12.
    KIRSCHBAUM C, PRUSSNER J C, STONE A A, et al. Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men[J]. Psychosomatic Medicine, 1995, 57(5): 468-474.
    MCEWEN B S and STELLAR E. Stress and the individual: Mechanisms leading to disease[J]. Archives of Internal Medicine, 1993, 153(18): 2093-2101. doi: 10.1001/archinte. 1993.00410180039004.
    LUTCHYN Y, JOHNS P, CZERWINSKI M, et al. Stress is in the eye of the beholder[C]. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), Xian, China, 2015: 119-124. doi: 10.1109/ACII.2015. 7344560.
    HAAG A, GORONZY S, SCHAICH P, et al. Emotion recognition using bio-sensors: First steps towards an automatic system[C]. Tutorial and Research Workshop on Affective Dialogue Systems, Kloster Irsee, Germany, 2004: 36-48. doi: 10.1007/978-3-540-24842-2_4.
    SANO A, PHILLIPS A J, AMY Z Y, et al. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones[C]. IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 2015: 1-6. doi: 10.1109/BSN.2015.7299420.
    CHOI J and GUTIERREZ-OSUNA R. Using heart rate monitors to detect mental stress[C]. IEEE Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 2009: 219-223. doi: 10.1109/ BSN.2009.13.
    WIJSMAN J, GRUNDLEHNER B, LIU H, et al. Towards mental stress detection using wearable physiological sensors [C]. IEEE 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011: 1798-1801. doi: 10.1109/IEMBS.2011.6090512.
    MCDUFF D, GONTAREK S, and PICARD R. Remote measurement of cognitive stress via heart rate variability[C]. IEEE 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014: 2957-2960. doi: 10.1109/EMBC.2014.6944243.
    MCDUFF D J, HERNANDEZ J, GONTAREK S, et al. Cogcam: Contact-free measurement of cognitive stress during computer tasks with a digital camera[C]. Proceedings of the 2016 ACM CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 2016: 4000-4004. doi: 10.1145/ 2858036.2858247.
    DEDOVIC K, RENWICK R, MAHANI N K, et al. The montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain[J]. Journal of Psychiatry Neuroscience, 2005, 30(5): 319-325.
    PAN J and TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230-236. doi: 10.1109/TBME.1985.325532.
    BERNTSON G G, QUIGLEY K S, JANG J F, et al. An approach to artifact identification: Application to heart period data[J]. Psychophysiology, 1990, 27(5): 586-598. doi: 10.1111/j.1469-8986.1990.tb01982.x.
    LU W, NYSTROM M M, PARIKH P J, et al. A semi- automatic method for peak and valley detection in free-breathing respiratory waveforms[J]. Medical Physics, 2006, 33(10): 3634-3636. doi: 10.1118/1.2348764.
    STEPHENS C L, CHRISTIE I C, and FRIEDMAN B H. Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis[J]. Biological Psychology, 2010, 84(3): 463-473. doi: 10.1016/j.biopsycho. 2010.03.014.
    劉袁緣, 陳靚影, 俞侃, 等. 基于樹結(jié)構(gòu)分層隨機(jī)森林在非約束環(huán)境下的頭部姿態(tài)估計(jì)[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 543-551. doi: 10.11999/JEIT140433.
    LIU Yuanyuan, CHEN Jingying, YU Kan, et al. Head pose estimation based on tree-structure cascaded random forests in unconstrained environment[J]. Journal of Electronics Information Technology, 2015, 37(3): 543-551. doi: 10.11999/ JEIT140433.
    HOVSEPIAN K, AL,ABSI M, ERTIN E, et al. CStress: Towards a gold standard for continuous stress assessment in the mobile environment[C]. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 2015: 493-504. doi: 10.1145/ 2750858.2807526.
    高發(fā)榮, 王佳佳, 席旭剛, 等. 基于粒子群優(yōu)化-支持向量機(jī)方法的下肢肌電信號步態(tài)識別[J]. 電子與信息學(xué)報(bào), 2015, 37(5): 1154-1159. doi: 10.11999/JEIT141083.
    GAO Farong, WANG Jiajia, XI Xugang, et al. Gait recognition for lower extremity electromyographic signals based on PSO-SVM method[J]. Journal of Electronics Information Technology, 2015, 37(5): 1154-1159. doi: 10.11999/JEIT141083.
    陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557-564. doi: 10.11999/ JEIT150693.
    CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693.
    SETZ C, ARNRICH B, SCHUMM J, et al. Discriminating stress from cognitive load using a wearable EDA device[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 410-417. doi: 10.1109/TITB.2009. 2036164.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1515
  • HTML全文瀏覽量:  203
  • PDF下載量:  303
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回