基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法
doi: 10.11999/JEIT170108
-
2.
(中國(guó)科學(xué)院電子學(xué)研究所 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100049) ③(中國(guó)人民解放軍海軍總醫(yī)院 北京 100048)
國(guó)家自然科學(xué)基金(61302033),北京市自然科學(xué)基金(Z160003),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC1304302, 2016YFC0206502, 2016YFC1303900)
Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation
-
2.
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
The National Natural Science Foundation of China (61302033), The Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)
-
摘要: 心臟疾病是全球發(fā)病率和死亡率最高的疾病,心音聽診可以獲取心臟的機(jī)械特性及結(jié)構(gòu)特征,與超聲心動(dòng)圖、核磁共振等無創(chuàng)診斷技術(shù)相比具有快速、低成本和操作簡(jiǎn)單的優(yōu)勢(shì)。心音信號(hào)成分復(fù)雜,容易受到各種噪聲和干擾的影響,聽診診斷結(jié)果容易受到醫(yī)生主觀性的影響,極大限制了心音聽診的應(yīng)用。該文提出一種基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法,預(yù)先估計(jì)了心音的心動(dòng)周期,存在隨機(jī)干擾的情況下也可以正確識(shí)別信號(hào)中80%以上的心動(dòng)周期,提高了算法的穩(wěn)定性。同時(shí)提出了區(qū)分度良好的時(shí)域和頻域特征指標(biāo),利用支持向量機(jī)建模,對(duì)異常心音的識(shí)別率可達(dá)92%。算法可輔助醫(yī)生診斷,或用于家用便攜式心音監(jiān)護(hù)設(shè)備。Abstract: Heart disease is of highest morbidity and mortality. The cardiac structure and mechanical characteristics can be reflected by auscultation. Compared with echocardiography and nuclear magnetic resonance, auscultation gets the advantages of fast, low cost and easy to use. The composition of phonocardiogram is complex, and the auscultation is easy to be affected by the subjectivity of the doctor, various noise and disturbances, which limits the application of auscultation. The algorithm of phonocardiogram segmentation and abnormal phonocardiogram screening is presented. For the reason that the heart cycle is estimated in advance, 80% cardiac cycle can be recognition correctly when random disturbances exist. The diagnostic indexes of time and frequency domain with high discrimination are also presented, and the abnormal heart sounds are recognized by Support Vector Machine (SVM) with the accuracy about 92%. The algorithm can be used for assisting doctors or portable phonocardiogram monitoring device.
-
KIM S and HWANG D. Murmur-adaptive compression technique for phonocardiogram signals[J]. Electronics Letters, 2016, 52(3): 183-184. doi: 10.1049/el.2015.3449. RANDHAWA S K and SINGH M. Classification of heart sound signals using multi-modal features[J]. Procedia Computer Science, 2015, 58: 165-171. doi: 10.1016/j.procs. 2015.08.045. Bank I, VLIEGEN H W, and BRUSCHKE A V. The 200th anniversary of the stethoscope: Can this low-tech device survive in the high-tech 21st century[J]. European Heart Journal, 2016, 37(47): 3536-3543. doi: 10.1093/eurheartj /ehw034. 趙彩華, 劉琚, 孫建德, 等. 基于小波變換和獨(dú)立分量分析的含噪混疊語音盲分離[J]. 電子與信息學(xué)報(bào), 2006, 28(9): 1565-1568. ZHAO Caihua, LIU Ju, SUN Jiande, et al. Blind separation of noisy speech mixtures based on wavelet transform and independent component analysis[J]. Journal of Electronics Information Technology, 2006, 28(9): 1565-1568. SAFARA F. Cumulant-based trapezoidal basis selection for heart sound classification[J]. Medical Biological Engineering Computing, 2015, 53(11): 1153-1164. doi: 10. 1007/s11517-015-1394-4. JATUPAIBOON N, PAN-NGUM S, and ISRASENA P. Electronic stethoscope prototype with adaptive noise cancellation[C]. 8th International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2010: 32-36. CHENG Xiefeng and LI Wei. Research on heart-sound graphical processing methods based on heart-sounds window function[J]. Acta Physica Sinica, 2015, 64(5): 58703. doi: 10.7498/aps.64.058703. VARGHEES V N and RAMACHANDRAN K I. A novel heart sound activity detection framework for automated heart sound analysis[J]. Biomedical Signal Processing Control, 2014, 13(1): 174-188. doi: 10.1016/j.bspc.2014.05. 002. CHAKRABARTI T, SAHA S, ROY S, et al. Phonocardiogram signal analysis-practices, trends and challenges: A critical review[C]. International Conference and Workshop on Computing and Communication, Vancouver, Canada, 2015: 1-4. SHARMA L N. Multiscale analysis of heart sound for segmentation using multiscale hilbert envelope[C]. International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2015: 33-37. SPRINGER D, TARASSENKO L, and CLIFFORD G. Logistic regression-HSMM-based heart sound segmentation [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 822-832. doi: 10.1109/TBME.2015.2475278. HOYOS C C, MURILLO-RENDON S, and CASTELLANOS- DOMINGUEZ C G. Heart Sound Segmentation in Noisy Environments[M]. Berlin: Springer, 2013: 254-263. PAPADANIIL C D and HADJILEONTIADIS L J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features[J]. IEEE Journal of Biomedical Health Informatics, 2014, 18(4): 1138-1152. doi: 10.1109/JBHI.2013.2294399. MOHAMAD M M, SH-HUSSAIN H, TING C M, et al. Heart sound monitoring system[J]. Journal of Engineering Applied Sciences, 2016, 11(7): 4748-4755. BRUSCO M and NAZERAN H. Development of an intelligent PDA-based wearable digital phonocardiograph[C]. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 3506-3509. CLIFFORD G D, LIU C, MOODY B, et al. Classification of normal/abnormal heart sound recordings: the physioNet/ computing in cardiology challenge 2016[C]. Computing in Cardiology, Vancouver, Canada, 2016: 609-612. MOHAMMAD A, ABTAHI M, CONSTANT N, et al. Mobile phonocardiogram diagnosis in newborns using support vector machine[J]. Healthcare, 2017, 5(1): 16-26. doi: 10.3390/ healthcare5010016. ZHANG W, HAN J, and DENG S. Heart sound classification based on scaled spectrogram and partial least squares regression[J]. Biomedical Signal Processing Control, 2017, 32(2): 20-28. doi: 10.1016/j.bspc.2016.10.004. KAO W C and WEI C C. Automatic phonocardiograph signal analysis for detecting heart valve disorders[J]. Expert Systems with Applications, 2011, 38(6): 6458-6468. doi: 10.1016/j.eswa.2010.11.100. 徐長(zhǎng)發(fā), 李國(guó)寬. 實(shí)用小波方法[M]. 武漢: 華中科技大學(xué)出版社, 2009: 100-101. XU Changfa and LI Guokuan. Practical Wavelet Method[M]. Wuhan: Huazhong University of Science Technology Press, 2009: 100-101. 蒲秀娟, 曾孝平, 韓亮, 等. 基于最小二乘支持向量機(jī)的胎兒心電信號(hào)提取[J]. 電子與信息學(xué)報(bào), 2009, 31(12): 2941-2947. PU Xiujuan, ZENG Xiaoping, HAN Liang, et al. Extraction of fetal electrocardiogram signal using least squares support vector machines[J]. Journal of Electronics Information Technology, 2009, 31(12): 2941-2947. KRISTOMO D, HIDAYAT R, SOESANTI I, et al. Heart sound feature extraction and classification using autoregressive power spectral density (AR-PSD) and statistics features[C]. Advances of Science and Technology for Society: Proceedings of the International Conference on Science and Technology, Yogyakarta, Indonesia, 2016: (090007-1-090007-7). -
計(jì)量
- 文章訪問數(shù): 1549
- HTML全文瀏覽量: 189
- PDF下載量: 229
- 被引次數(shù): 0