一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法

趙湛 張旭茹 方震 陳賢祥 杜利東 李田昌

趙湛, 張旭茹, 方震, 陳賢祥, 杜利東, 李田昌. 基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
引用本文: 趙湛, 張旭茹, 方震, 陳賢祥, 杜利東, 李田昌. 基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108
Citation: ZHAO Zhan, ZHANG Xuru, FANG Zhen, CHEN Xianxiang, DU Lidong, LI Tianchang. Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2677-2683. doi: 10.11999/JEIT170108

基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法

doi: 10.11999/JEIT170108
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61302033),北京市自然科學(xué)基金(Z160003),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation

Funds: 

The National Natural Science Foundation of China (61302033), The Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

  • 摘要: 心臟疾病是全球發(fā)病率和死亡率最高的疾病,心音聽診可以獲取心臟的機(jī)械特性及結(jié)構(gòu)特征,與超聲心動(dòng)圖、核磁共振等無創(chuàng)診斷技術(shù)相比具有快速、低成本和操作簡(jiǎn)單的優(yōu)勢(shì)。心音信號(hào)成分復(fù)雜,容易受到各種噪聲和干擾的影響,聽診診斷結(jié)果容易受到醫(yī)生主觀性的影響,極大限制了心音聽診的應(yīng)用。該文提出一種基于心動(dòng)周期估計(jì)的心音分割及異常心音篩查算法,預(yù)先估計(jì)了心音的心動(dòng)周期,存在隨機(jī)干擾的情況下也可以正確識(shí)別信號(hào)中80%以上的心動(dòng)周期,提高了算法的穩(wěn)定性。同時(shí)提出了區(qū)分度良好的時(shí)域和頻域特征指標(biāo),利用支持向量機(jī)建模,對(duì)異常心音的識(shí)別率可達(dá)92%。算法可輔助醫(yī)生診斷,或用于家用便攜式心音監(jiān)護(hù)設(shè)備。
  • KIM S and HWANG D. Murmur-adaptive compression technique for phonocardiogram signals[J]. Electronics Letters, 2016, 52(3): 183-184. doi: 10.1049/el.2015.3449.
    RANDHAWA S K and SINGH M. Classification of heart sound signals using multi-modal features[J]. Procedia Computer Science, 2015, 58: 165-171. doi: 10.1016/j.procs. 2015.08.045.
    Bank I, VLIEGEN H W, and BRUSCHKE A V. The 200th anniversary of the stethoscope: Can this low-tech device survive in the high-tech 21st century[J]. European Heart Journal, 2016, 37(47): 3536-3543. doi: 10.1093/eurheartj /ehw034.
    趙彩華, 劉琚, 孫建德, 等. 基于小波變換和獨(dú)立分量分析的含噪混疊語音盲分離[J]. 電子與信息學(xué)報(bào), 2006, 28(9): 1565-1568.
    ZHAO Caihua, LIU Ju, SUN Jiande, et al. Blind separation of noisy speech mixtures based on wavelet transform and independent component analysis[J]. Journal of Electronics Information Technology, 2006, 28(9): 1565-1568.
    SAFARA F. Cumulant-based trapezoidal basis selection for heart sound classification[J]. Medical Biological Engineering Computing, 2015, 53(11): 1153-1164. doi: 10. 1007/s11517-015-1394-4.
    JATUPAIBOON N, PAN-NGUM S, and ISRASENA P. Electronic stethoscope prototype with adaptive noise cancellation[C]. 8th International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2010: 32-36.
    CHENG Xiefeng and LI Wei. Research on heart-sound graphical processing methods based on heart-sounds window function[J]. Acta Physica Sinica, 2015, 64(5): 58703. doi: 10.7498/aps.64.058703.
    VARGHEES V N and RAMACHANDRAN K I. A novel heart sound activity detection framework for automated heart sound analysis[J]. Biomedical Signal Processing Control, 2014, 13(1): 174-188. doi: 10.1016/j.bspc.2014.05. 002.
    CHAKRABARTI T, SAHA S, ROY S, et al. Phonocardiogram signal analysis-practices, trends and challenges: A critical review[C]. International Conference and Workshop on Computing and Communication, Vancouver, Canada, 2015: 1-4.
    SHARMA L N. Multiscale analysis of heart sound for segmentation using multiscale hilbert envelope[C]. International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 2015: 33-37.
    SPRINGER D, TARASSENKO L, and CLIFFORD G. Logistic regression-HSMM-based heart sound segmentation [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 822-832. doi: 10.1109/TBME.2015.2475278.
    HOYOS C C, MURILLO-RENDON S, and CASTELLANOS- DOMINGUEZ C G. Heart Sound Segmentation in Noisy Environments[M]. Berlin: Springer, 2013: 254-263.
    PAPADANIIL C D and HADJILEONTIADIS L J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features[J]. IEEE Journal of Biomedical Health Informatics, 2014, 18(4): 1138-1152. doi: 10.1109/JBHI.2013.2294399.
    MOHAMAD M M, SH-HUSSAIN H, TING C M, et al. Heart sound monitoring system[J]. Journal of Engineering Applied Sciences, 2016, 11(7): 4748-4755.
    BRUSCO M and NAZERAN H. Development of an intelligent PDA-based wearable digital phonocardiograph[C]. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 3506-3509.
    CLIFFORD G D, LIU C, MOODY B, et al. Classification of normal/abnormal heart sound recordings: the physioNet/ computing in cardiology challenge 2016[C]. Computing in Cardiology, Vancouver, Canada, 2016: 609-612.
    MOHAMMAD A, ABTAHI M, CONSTANT N, et al. Mobile phonocardiogram diagnosis in newborns using support vector machine[J]. Healthcare, 2017, 5(1): 16-26. doi: 10.3390/ healthcare5010016.
    ZHANG W, HAN J, and DENG S. Heart sound classification based on scaled spectrogram and partial least squares regression[J]. Biomedical Signal Processing Control, 2017, 32(2): 20-28. doi: 10.1016/j.bspc.2016.10.004.
    KAO W C and WEI C C. Automatic phonocardiograph signal analysis for detecting heart valve disorders[J]. Expert Systems with Applications, 2011, 38(6): 6458-6468. doi: 10.1016/j.eswa.2010.11.100.
    徐長(zhǎng)發(fā), 李國(guó)寬. 實(shí)用小波方法[M]. 武漢: 華中科技大學(xué)出版社, 2009: 100-101.
    XU Changfa and LI Guokuan. Practical Wavelet Method[M]. Wuhan: Huazhong University of Science Technology Press, 2009: 100-101.
    蒲秀娟, 曾孝平, 韓亮, 等. 基于最小二乘支持向量機(jī)的胎兒心電信號(hào)提取[J]. 電子與信息學(xué)報(bào), 2009, 31(12): 2941-2947.
    PU Xiujuan, ZENG Xiaoping, HAN Liang, et al. Extraction of fetal electrocardiogram signal using least squares support vector machines[J]. Journal of Electronics Information Technology, 2009, 31(12): 2941-2947.
    KRISTOMO D, HIDAYAT R, SOESANTI I, et al. Heart sound feature extraction and classification using autoregressive power spectral density (AR-PSD) and statistics features[C]. Advances of Science and Technology for Society: Proceedings of the International Conference on Science and Technology, Yogyakarta, Indonesia, 2016: (090007-1-090007-7).
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1549
  • HTML全文瀏覽量:  189
  • PDF下載量:  229
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-02-10
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回