復(fù)雜電磁環(huán)境下通信裝備干擾預(yù)測(cè)方法
doi: 10.11999/JEIT170107
-
1.
(軍械工程學(xué)院電磁環(huán)境效應(yīng)國家級(jí)重點(diǎn)實(shí)驗(yàn)室 石家莊 050003) ②(中國人民解放軍61469部隊(duì) 石家莊 050000)
國家自然科學(xué)基金(61372040)
Interference Prediction Method of Communication Equipment Under Complex Electromagnetic Environment
-
1.
(National Key Laboratory of Electromagnetic Environment Effects, College of Ordnance Engineering, Shijiazhuang 050003, China)
-
2.
(Unit 61469 of the PLA, Shijiazhuang 050000, China)
The National Natural Science Foundation of China (61372040)
-
摘要: 該文通過通信裝備帶內(nèi)電磁干擾效應(yīng)機(jī)理研究,分別以峰值場(chǎng)強(qiáng)敏感和平均功率敏感為基礎(chǔ),建立了兩種用頻裝備帶內(nèi)多頻電磁干擾預(yù)測(cè)模型,提出一種電磁干擾預(yù)測(cè)方法。首先通過單頻和調(diào)幅波試驗(yàn)確定受試裝備的敏感參量,然后根據(jù)不同敏感參量模型對(duì)某電磁環(huán)境下受試裝備是否會(huì)受到干擾進(jìn)行預(yù)測(cè)。該文以不同制式通用通信裝備為試驗(yàn)對(duì)象,通過帶內(nèi)雙頻、帶內(nèi)三頻電磁輻射效應(yīng)試驗(yàn)對(duì)預(yù)測(cè)方法進(jìn)行了驗(yàn)證。試驗(yàn)結(jié)果表明:通過單頻和調(diào)幅連續(xù)波電磁輻射敏感度之間的差別能夠區(qū)分受試設(shè)備符合哪種帶內(nèi)多頻電磁干擾預(yù)測(cè)模型,對(duì)干擾峰值場(chǎng)強(qiáng)敏感的EUT1預(yù)測(cè)模型效應(yīng)指數(shù)都略大于1,對(duì)干擾平均功率敏感的EUT2預(yù)測(cè)模型效應(yīng)指數(shù)都在1左右。以此為基礎(chǔ)提出了通信裝備帶內(nèi)多頻電磁干擾預(yù)測(cè)方法,能夠有效解決通信裝備帶內(nèi)多頻電磁干擾預(yù)測(cè)問題。
-
關(guān)鍵詞:
- 復(fù)雜電磁環(huán)境 /
- 效應(yīng)預(yù)測(cè) /
- 電磁干擾 /
- 帶內(nèi) /
- 多頻
Abstract: The communication equipment effect mechanism under in-band electromagnetic interference is studied in this paper. Two electromagnetic interference prediction models are established. One model is based on the assumption that in-band interference is sensitive to the amplitude of field strength, and the other is based on the assumption that in-band interference is sensitive to the average power. The sensitive parameter can be distinguished by sine and AM test, and the Equipment Under Test (EUT) interference is predicted according to different models. The sine and AM continuous wave test, in-band dual-frequency test, in-band triple-frequency test are conducted with two typical VHF radios as test objects. Experiment results show that EUT1 is sensitive to the amplitude of field strength, and the model results are slightly greater than 1, and EUT2 is sensitive to the average power. The model results are all approximate 1. The prediction method of in-band multi-frequency electromagnetic interference is modified and improved by the test results. The proposed prediction method is able to forecast the communication equipment interference effectively under the in-band multi-frequency electromagnetic environment. -
劉培國, 覃宇建, 周東明, 等. 電磁兼容基礎(chǔ)[M]. 北京: 電子工業(yè)出版社, 2015: 259-261. LIU Peiguo, QIN Yujian, ZHOU Dongming, et al. Electromagnetic Compatibility Fundamentals[M]. Beijing: Publishing House of Electronics Industry, 2015: 259-261. GJB 151B-2013. 軍用設(shè)備和分系統(tǒng)電磁發(fā)射和敏感度要求與測(cè)量[S]. 2013. GJB 151B-2013. Electromagnetic emission and susceptibility requirements and measurments for military equipment and subsystems[S]. 2013. MARDIGUIAN M. Combined effects of several simultaneous EMI couplings[C]. IEEE International Symposium on EMC, 2000: 181-184. GROMMES W and ARMSTRONG K. Developing immunity testing to cover intermodulation[C]. IEEE International Symposium on EMC, 2011: 999-1004. DUFFY A, ORLANDI A, and ARMSTRONG K. Preliminary study of a reverberation chamber method for multiple-source testing using intermodulation[J]. IET Science, Measurement and Technology, 2010, 4(1): 21-27. WANG Guosheng and QI Zongfeng. AHP effectiveness evaluation of electronic warfare command and control system under complex electromagnetic[J]. Advanced Materials Research, 2014, 989-994: 3212-3215. AI-Badi A H, Ghania S M, and EL-Saadany E F. Prediction of metallic conductor voltage owing to electromagnetic coupling using neuro fuzzy modeling[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 319-327. GUO Shuxia, Dong Zhongyao, HU Zhantao, et al. Simulation of dynamic electromagnetic interference environment for unmanned aerial vehicle data link[J]. China Communications, 2013, 10(7): 19-28. YAN Liping, ZHAO Xiang, ZHAN Hang, et al. Artificial neural network modeling of electromagnetic interference caused by nonlinear devices inside a metal enclosure[J]. Journal of Electromagnetic Waves Application, 2015, 29(8): 992-1004. CEPERIC V, GIELEN G, and BARIC A. Black-box modeling of conducted electromagnetic immunity by support vector machines[C]. International Symposium on Electromagnetic Compatibility (EMC Europe), Rome, Italy, 2012, 1-6. 張薇瑋, 丁文銳, 劉春輝. 復(fù)雜環(huán)境中無人機(jī)數(shù)據(jù)鏈干擾效果預(yù)測(cè)方法[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(4): 760-766. doi: 10.3969/j.issn.1001-506X.2016.04.06. ZHANG Weiwei, DING Wenrui, and LIU Chunhui. Prediction of interference effect on UAV data link in complex environment[J]. Systems Engineering and Electronics, 2016, 38(4): 760-766. doi: 10.3969/j.issn.1001-506X.2016.04.06. 魏光輝, 耿利飛, 潘曉東. 通信電臺(tái)電磁輻射效應(yīng)機(jī)理[J]. 高電壓技術(shù), 2014, 40(9): 2685-2692. doi: 10.13336/j.1003-6520. hve.2014.09.011. WEI Guanghui, GENG Lifei, and PAN Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685-2692. doi: 10.13336/j.1003-6520.hve.2014.09.011. OTT W H. Electromagnetic Compatibility Engineering[M]. New York, Publishing House of Wiley, 2011. 李偉, 魏光輝, 潘曉東, 等. 典型通信裝備帶內(nèi)雙頻連續(xù)波電磁輻射效應(yīng)預(yù)測(cè)方法[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(11): 2474-2480. doi: 10.3969/j.issn.1001-506X.2016.11.04. LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474-2480. doi: 10.3969/j.issn.1001 -506X.2016.11.04. 李偉, 魏光輝, 潘曉東, 等. 典型通信裝備電磁敏感度判據(jù)研究[J]. 微波學(xué)報(bào), 2016, 32(6): 70-75. dio: 10.14183/j.cnki. 1005-6122.201606017. LI Wei, WEI Guanghui, PAN Xiaodong, et al. Research on electromagnetic susceptibility criterion for typical communication equipment[J]. Journal of Microwaves, 2016, 32(6): 70-75. dio: 10.14183/j.cnki.1005-6122.201606017. -
計(jì)量
- 文章訪問數(shù): 1372
- HTML全文瀏覽量: 240
- PDF下載量: 295
- 被引次數(shù): 0