一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于矢量影響力聚類系數(shù)的高效有向網(wǎng)絡(luò)社團(tuán)劃分算法

鄧小龍 翟佳羽 尹欒玉

鄧小龍, 翟佳羽, 尹欒玉. 基于矢量影響力聚類系數(shù)的高效有向網(wǎng)絡(luò)社團(tuán)劃分算法[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
引用本文: 鄧小龍, 翟佳羽, 尹欒玉. 基于矢量影響力聚類系數(shù)的高效有向網(wǎng)絡(luò)社團(tuán)劃分算法[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
Citation: DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102

基于矢量影響力聚類系數(shù)的高效有向網(wǎng)絡(luò)社團(tuán)劃分算法

doi: 10.11999/JEIT170102
基金項(xiàng)目: 

國(guó)家973 計(jì)劃項(xiàng)目(2013CB 329600),教育部哲學(xué)社會(huì)科學(xué)重大攻關(guān)項(xiàng)目(15JZD027),十二五國(guó)家科技支撐計(jì)劃國(guó)家文化科技創(chuàng)新工程2013 年備選項(xiàng)目(2013BAH43F01)

Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm

Funds: 

The National 973 Project of China (2013CB329600), The Philosophy and Social Science Project of Education Ministry (15JZD027), The National Culture Support Foundation Project of China (2013BAH43F01)

  • 摘要: 社團(tuán)結(jié)構(gòu)劃分對(duì)于分析復(fù)雜網(wǎng)絡(luò)的統(tǒng)計(jì)特性非常重要,以往研究往往側(cè)重對(duì)無(wú)向網(wǎng)絡(luò)的社團(tuán)結(jié)構(gòu)挖掘,對(duì)新興的微信朋友圈網(wǎng)絡(luò)、微博關(guān)注網(wǎng)絡(luò)等涉及較少,并且缺乏高效的劃分工具。為解決傳統(tǒng)社團(tuán)劃分算法在大規(guī)模有向社交網(wǎng)絡(luò)上無(wú)精確劃分模擬模型,算法運(yùn)行效率低,精度偏差大的問(wèn)題。該文從構(gòu)成社團(tuán)結(jié)構(gòu)最基礎(chǔ)的三角形極大團(tuán)展開數(shù)學(xué)推導(dǎo),對(duì)網(wǎng)絡(luò)節(jié)點(diǎn)的局部信息傳遞過(guò)程進(jìn)行建模,并引入概率圖有向矢量計(jì)算理論,對(duì)有向社交網(wǎng)絡(luò)中具有較大信息傳遞增益的節(jié)點(diǎn)從數(shù)學(xué)基礎(chǔ)創(chuàng)造性地構(gòu)建了有向傳遞增益系數(shù)(Information Transfer Gain, ITG)。該文以此構(gòu)建了新的有向社團(tuán)結(jié)構(gòu)劃分效果的目標(biāo)函數(shù),提出了新型有向網(wǎng)絡(luò)社團(tuán)劃分算法ITG,通過(guò)在模擬網(wǎng)絡(luò)數(shù)據(jù)集和真實(shí)網(wǎng)絡(luò)數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn),驗(yàn)證了所提算法的精確性和新穎性,并優(yōu)于FastGN, OSLOM和Infomap等經(jīng)典算法。
  • XIE J, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: The state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): 2-35. doi: 10.1145/2501654.2501657.
    NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. doi: 10.1103/PhysRevE.69.066113.
    CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111.
    BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): 1-12. doi: 10.1088/1742-5468/2008/10/P10008.
    PRAT-PREZ A, DOMINGUEZ-SAL D, and LARRIBA- PEY J L. High quality, scalable and parallel community detection for large real graphs[C]. The 23rd International Conference on World Wide Web, ACM, Seoul, Korea 2014: 225-236. doi: 10.1145/2566486.2568010.
    ZHU X, GHAHRAMANI Z, and LAFFERTY J. Semi- supervised learning using Gaussian fields and harmonic functions[C]. International Conference on Machine Learning, Washington D.C., US, 2003, 3: 912-919.
    RAGHAVAN U N, ALBERT R, and KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 036106. doi: 10.1103/PhysRevE.76.036106.
    PONS P and LATAPY M. Computing communities in large networks using random walks[C]. International Symposium on Computer and Information Sciences. Springer Berlin Heidelberg, Krakow, Poland, 2005: 284-293. doi: 10.1007/ 11569596_31.
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4): 1118-1123. doi: 10.1073/pnas.0706851105.
    LANCICHINETTI A and FORTUNATO S. Community detection algorithms: A comparative analysis[J]. Physical Review E, 2009, 80(5): 056117. doi: 10.1103/PhysRevE.80. 056117.
    PALLA G, DERNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. doi: 10.1038/nature03607.
    AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multi scale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182.
    LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS One, 2011, 6(4): e18961. doi: 10.1371/journal.pone. 0018961.
    YANG J and LESKOVEC J. Overlapping community detection at scale: A nonnegative matrix factorization approach[C]. The Sixth ACM International Conference on Web Search and Data Mining. ACM, Rome, Italy, 2013: 587-596. doi: 10.1145/2433396.2433471.
    NEWMAN M E J and CLAUSET A. Structure and inference in annotated networks[J]. Nature Communications, 2016,7: 11863. doi: 10.1038/ncomms11863.
    KOLLER D and FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques[M]. Massachusetts USA, MIT Press, 2009: 1-5.
    PRAT-PREZ A, DOMINGUEZ-SAL D, BRUNAT J M, et al. Shaping communities out of triangles[C]. The 21st ACM International Conference on Information and Knowledge Management, ACM, 2012: 1677-1681. doi: 10.1145/2396761. 2398496.
    LEVORATO V and PETERMANN C. Detection of communities in directed networks based on strongly p-connected components[C]. IEEE 2011 International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 2011: 211-216. doi: 10.1109/ CASON.2011.6085946.
    ARENAS A, DUCH J, FERNNDEZ A, et al. Size reduction of complex networks preserving modularity[J]. New Journal of Physics, 2007, 9(6): 1-14. doi: 10.1088/1367-2630/9/6/176.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1103
  • HTML全文瀏覽量:  133
  • PDF下載量:  293
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-01-25
  • 修回日期:  2017-08-16
  • 刊出日期:  2017-09-19

目錄

    /

    返回文章
    返回