一種AlGaN/GaN HEMT非線性器件模型參數(shù)提取的方法
doi: 10.11999/JEIT170097
基金項(xiàng)目:
國家自然科學(xué)基金(61574112 ),陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(605119425012)
A Method for AlGaN/GaN HEMT Nonlinear Device Model Parameter Extraction
Funds:
The National Natural Science Foundation of China (61574112), The Natural Science Foundation Research Project of Shaanxi Provience (605119425012)
-
摘要: 該文提出一種新的絕對誤差函數(shù),應(yīng)用該函數(shù)進(jìn)行非線性模型參數(shù)提取可以避免計(jì)算誤差,顯著降低參數(shù)提取的不準(zhǔn)確性。由于氮化物半導(dǎo)體器件,尤其是AlGaN/GaN HEMT器件已經(jīng)開始得到廣泛應(yīng)用,其模型和參數(shù)對射頻和電力電子器件和電路設(shè)計(jì)至關(guān)重要,分別使用3種誤差函數(shù)對 AlGaN/GaN HEMT器件模型進(jìn)行了參數(shù)提取并對比,對比結(jié)果表明該文提出的誤差函數(shù)更加精確和有效。同時(shí)為今后的電子器件的模型參數(shù)提取提供了一種有效且精確的方法。
-
關(guān)鍵詞:
- AlGaN/GaN HEMT /
- 絕對誤差函數(shù) /
- 參數(shù)提取 /
- 遺傳算法
Abstract: A new absolute error function is presented in this paper. The function is applied to extract parameters of the nonlinear model, which can avoid the calculation error and reduce the inaccurate parameter extraction significantly. Nitride semiconductor devices are widely used, especially the AlGaN/GaN HEMT devices. The AlGaN/GaN HEMT model and parameters is very important to radio frequency, power electronic devices and circuit design. The new absolute error function is applied to extract the parameters of AlGaN/GaN HEMT nonlinear devices model. Through comparing three kinds of error function, the results show that the proposed error function is more accurate and effective. At the same time, a precise and effective method is provided to extract the parameters of electronic devices in the future.-
Key words:
- AlGaN/GaN HEMT /
- Absolute error function /
- Parameter extraction /
- Genetic algorithm
-
ZHANG Zhili, YU Guotao, ZHANG Xiaodong, et al. 16.8 A/600 V AlGaN/GaN MIS-HEMTs employing LPCVD- Si3N4 as gate insulator[J]. Electronics Letters, 2015, 51(15): 1201-1203. doi: 10.1049/el.2015.1018. XU Ke, WANG Jianfeng, and REN Guoqiang. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6): 1-16. doi: 10.1088/1674-1056/24/6/066105. DU Jiangfeng, CHEN Nanting, PAN Peilin, et al. High breakdown voltage AlGaN/GaN HEMT with high-K/low-K compoundpassiv-ation[J]. Electronics Letters, 2015, 51(1): 104-106. doi: 10.1049/el.2014.3252. HIROSHI O, KANEDA N, FUMIMASA H, et al. Vertical GaN p-n junction diodes with high breakdown voltages over 4 kV[J]. IEEE Electron Device Letters, 2015, 36(11): 1180-1182. doi: 10.1109/LED.2015. 2478907. SUN H, POMEROY J W, SIMON R B, et al. Temperature-dependent thermal resistance of GaN-on- diamond HEMT wafers[J]. IEEE Electron Device Letters, 2016, 37(5): 621-624. doi: 10.1109/LED.2016.2537835. TANG Y, SHINOHARA K, REGAN D, et al. Ultrahigh- speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz[J]. IEEE Electron Device Letters, 2015, 36(6): 549-551. doi: 10.1109/LED.2015.2421311. GREENLEE J D, SPECHT P, ANDERSON T J, et al. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs[J]. Applied Physics Letters, 2015, 107(8): 287-290. doi: 10.1063/1.4929583. XI, Yuyin, HWANG Y H, HSIEH Y L, et al. Effect of proton irradiation on DC performance and reliability of circular- shaped AlGaN/GaN high electron mobility transistors[J]. ECS Transactions, 2014, 61(4): 179-185. doi: 10.1149/06104. 0179ecst. FITCH R C, WALKER D E, GREEN A J, et al. Implementation of high power density X-band AlGaN/GaN High Electron Mobility Transistors (HEMTs) in a millimeter- wave monolithic microwave integrated circuit (MMIC) process[J]. IEEE Electron Device Letters, 2015, 36(10): 1004-1007. doi: 10.1109/LED.2015.2474265. SABAT S L, COELHO L D S, and ABRAHAM A. MESFET DC model parameter extraction using quantum particle swarm optimization[J]. Microelectronics Reliability, 2009, 49(6): 660-666. doi: 10.1016/j.microrel.2009.03.005. HALCHIN D, MILLER M, GOLIO M, et al. HEMT models for large signal circuit simulation[C]. IEEE MTT-S International Microwave Symposium Digest, 1994, 2: 985-988. doi: 10.1109/MWSYM.1994.335191. WANG K and YE M. Parameter determination of Schottky- barrier diode model using differential evolution[J]. Solid- State Electronics, 2009, 53(2): 234-240. doi: 10.1016/j.sse. 2008.11.010. HAOUARI MERBAH M, BELHAMEL M, TOBIAS I, et al. Extraction and analysis of solar cell parameters from the illuminated currentvoltage curve[J]. Solar Energy Materials Solar Cells, 2005, 87(1-4): 225-233. doi: 10.1016/j.solmat. 2004.07.019. KATABOGA N, KOCKANAT S, and DOGAN H. The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony[J]. Applied Intelligence, 2013, 38(3): 279-288. doi: 10.1007/ s10489-012-0372-x. MEMON Q D, AHMED M M, MEMON N M, et al. An efficient mechanism to simulate DC characteristics of GaAs MESFETs using swarm optimization[C]. IEEE International Conference on Emerging Technologies, Ankara, Turkey, 2013: 1-5. doi: 10.1109/ICET. 2013.6743542. THAKKER R A, PATIL M B, and ANIL K G. Parameter extraction for PSP MOSFET model using hierarchical particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2009, 22(2): 317-328. doi: 10.1016/j. engappai.2008.07.001. 毛維, 楊翠, 郝躍, 等. 場板抑制GaN高電子遷移率晶體管電流崩塌的機(jī)理研究[J]. 物理學(xué)報(bào), 2011, 60(1): 586-591. MAO Wei, YANG Cui, and HAO Yue. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors[J]. Acta Physica Sinica, 2011, 60(1): 586-591. YUK K S, BRANNER G R, and MCQUATE D J. A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge- trapping effects[J]. IEEE Transactions on Microwave Theory Techniques, 2009, 57(12): 3322-3332. doi: 10.1109/TMTT. 2009.2033299. YUK K, BRANNER G R, and MCQUATE D. An improved empirical large-signal model for high-power GaN HEMTs includin g self-heating and charge-trapping effects[C]. IEEE International Microwave Symposium Digest, Boston, America, 2009: 753-756. doi: 10.1109/MWSYM.2009. 5165806. -
計(jì)量
- 文章訪問數(shù): 980
- HTML全文瀏覽量: 129
- PDF下載量: 179
- 被引次數(shù): 0