一種新的避免航跡合并的聯(lián)合綜合概率數(shù)據(jù)關(guān)聯(lián)濾波器
doi: 10.11999/JEIT170085
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61401526),國(guó)家部委共用技術(shù)基金(9140A07020614DZ01)
Novel Track Coalescence Avoiding Joint Integrated Probabilistic Data Association Filter
Funds:
The National Natural Science Foundation of China (61401526), The Foundation of National Ministries (9140A07020614DZ01)
-
摘要: 針對(duì)聯(lián)合綜合概率數(shù)據(jù)關(guān)聯(lián)算法(JIPDA)存在的航跡合并問(wèn)題,將目標(biāo)建模為隨機(jī)有限集(RFS)提出改進(jìn)的JIPDA算法。傳統(tǒng)JIPDA首先產(chǎn)生初始概率密度函數(shù)(PDF),之后對(duì)該P(yáng)DF進(jìn)行近似來(lái)估計(jì)目標(biāo)狀態(tài)。為了使目標(biāo)狀態(tài)估計(jì)PDF與初始PDF之間的相似性最大化,當(dāng)目標(biāo)標(biāo)簽無(wú)意義時(shí),提出對(duì)JIPDA的初始PDF進(jìn)行優(yōu)化。將KL散度作為相似性的衡量標(biāo)準(zhǔn),建立起優(yōu)化過(guò)程的代價(jià)函數(shù)。仿真實(shí)驗(yàn)表明,所提方法可有效地抑制傳統(tǒng)JIPDA引起的航跡合并。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 聯(lián)合綜合概率數(shù)據(jù)關(guān)聯(lián) /
- 隨機(jī)有限集
Abstract: To avoid the track coalescence of the Joint Integrated Probabilistic Data Association (JIPDA), a modified version of JIPDA is proposed by modelling targets as Random Finite Set (RFS). The JIPDA first generates the original Probability Density Function (PDF) and then makes an approximation of the PDF to estimate target states. To maximize the similarity between the state estimate PDF and the original PDF, the original PDF is optimized when target label is irrelevant. Using the KL divergence as a measure of the similarity, the cost function is developed. The experimental results show that the proposed method can effectively avoid the track coalescence. -
CHANG K C and BAR-SHALOM Y. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers[J]. IEEE Transactions on Automatic Control, 1984, 29(7): 585-594. doi: 10.1109/TAC. 1984.1103597. MUICKI D and EVANS R. Joint integrated probabilistic data association-JIPDA[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 1093-1099. doi: 10.1109/ TAES.2004.1337482. 尹帥, 袁俊泉, 吳順華, 等. 一種改進(jìn)的JIPDA多目標(biāo)跟蹤算法[J]. 雷達(dá)科學(xué)與技術(shù), 2014, 12(3): 285-290. doi: 10.3969/ j.issn.1672-2337.2014.03.011. YIN Shuai, YUAN Junquan, WU Shunhua, et al. An improved JIPDA algorithm for multi-target tracking[J]. Radar Science and Technology, 2014, 12(3): 285-290. doi: 10.3969/j.issn.1672-2337.2014.03.011. 伍明, 李琳琳, 魏振華, 等. 一種未知環(huán)境下機(jī)器人多目標(biāo)跟蹤算法[J]. 智能系統(tǒng)學(xué)報(bào), 2015, 10(3): 448-453. doi: 10.3969/ j.issn.1673-4785.201405051. WU Ming, LI Linlin, WEI Zhenhua, et al. A robot multi- object tracking algorithm in unknown environments[J]. CAAI Transactions on Intelligent Systems, 2015, 10(3): 448-453. doi: 10.3969/j.issn.1673-4785.201405051. CHEN Xin, PELLETIER M, KIRUBARAJAN T, et al. Integrated Bayesian clutter estimation with JIPDA/MHT trackers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 395-414. doi: 10.1109/TAES.2013. 6404111. BLOM H A P, BLOEM E A, and MUICKI D. JIPDA*: Automatic target tracking avoiding track coalescence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 962-974. doi: 10.1109/TAES.2014.130327. MAHLER R. Statistical Multisource Multitarget Information Fusion[M]. London, Artech House, 2007: 5-14. WILLIAMS J L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1664-1687. doi: 10.1109/TAES.2015.130550. 余艷. 融合KL散度和移地距離的高斯混合模型相似性度量方法[J]. 計(jì)算機(jī)應(yīng)用, 2014, 34(3): 828-832. doi: 10.11772/j.issn. 1001-9081.2014.03.0828. YU Yan. Similarity measure method of Gaussian mixture model by integrating Kullback-Leibler divergence and earth mover's distance[J], Journal of Computer Applications, 2014, 34(3): 828-832. doi: 10.11772/j.issn.1001-9081.2014.03.0828. BLAHUT R E. Principles and Practice of Information Theory[M]. MA: Addison-Wesley, 1987, Chapter 7. SVENSSON L, SVENSSON D, and WILLETT P. Set JPDA algorithm for tracking unordered sets of targets[C]. 12th International Conference on Information Fusion, Seattle, WA, USA, 2009: 1187-1194. SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469. MUICKI D and EVANS R. Clutter map information for data association and track initialization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 387-398. doi: 10.1109/TAES.2004.1309992. JING P L, XU S Y, LI X, et al. Coalescence-avoiding joint probabilistic data association based on bias removal[J]. EURASIP Journal on Advances in Signal Processing, 2015(1): 1-13. doi: 10.1186/s13634-015-0205-2. PANAKKAL V P and VELMURUGAN R. Effective joint probabilistic data association using maximum a posteriori estimates of target states[C]. 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 781-788. -
計(jì)量
- 文章訪問(wèn)數(shù): 1278
- HTML全文瀏覽量: 176
- PDF下載量: 200
- 被引次數(shù): 0