一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于SVR-Kriging插值的礦井工人二維指紋定位數(shù)據(jù)庫構(gòu)建算法

王紅軍 周宇 王倫文

王紅軍, 周宇, 王倫文. 基于SVR-Kriging插值的礦井工人二維指紋定位數(shù)據(jù)庫構(gòu)建算法[J]. 電子與信息學報, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058
引用本文: 王紅軍, 周宇, 王倫文. 基于SVR-Kriging插值的礦井工人二維指紋定位數(shù)據(jù)庫構(gòu)建算法[J]. 電子與信息學報, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058
WANG Hongjun, ZHOU Yu, WANG Lunwen. Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058
Citation: WANG Hongjun, ZHOU Yu, WANG Lunwen. Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2571-2578. doi: 10.11999/JEIT170058

基于SVR-Kriging插值的礦井工人二維指紋定位數(shù)據(jù)庫構(gòu)建算法

doi: 10.11999/JEIT170058
基金項目: 

國家自然科學基金(61273302)

Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation

Funds: 

The National Natural Science Foundation of China (61273302)

  • 摘要: 為突破礦井工人指紋定位中1維模型在定位精度上的局限性,該文提出一種礦井工人2維指紋定位數(shù)據(jù)庫構(gòu)建算法,并通過SVR-Kriging插值法解決因2維模型帶來的數(shù)據(jù)采集工作量大的問題。首先,通過高斯濾波對采集的采樣點位置指紋信息進行預處理,并利用支持向量回歸由采樣點數(shù)據(jù)擬合變異函數(shù)。然后采用Kriging插值法補全2維網(wǎng)格劃分中的未采樣區(qū)域的位置指紋信息。最后綜合采樣點與插值點的位置指紋信息建立礦井工人指紋信息數(shù)據(jù)庫,為后續(xù)礦井工人指紋定位奠定基礎(chǔ)。仿真結(jié)果表明,該文算法在減少數(shù)據(jù)采集工作量的同時保證了算法的可行性與有效性,且在進行位置指紋定位時能夠保證較高的精度。
  • 胡青松, 張申, 吳立新, 等. 礦井動目標定位: 挑戰(zhàn)、現(xiàn)狀與趨勢[J]. 煤炭學報, 2016, 41(5): 1059-1068. doi: 10.13225/ j.cnki.jccs.2015.1267.
    HU Qingsong, ZHANG Shen, WU Lixin, et al. Localization techniques of mobile objects in coal mines: Challenges, solutions and trends[J]. Journal of China Coal Society, 2016, 41(5): 1059-1068. doi: 10.13225/j.cnki.jccs.2015.1267.
    WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on Bayesian filter using chrip-spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. doi: 10.1109/TIE.2011.2165462.
    WANG Jie, GAO Qinghua, PAN Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495.
    ERRINGTON A F C, DAKU B L F, and PRUGGER A F. Initial position estimation using RFID tags: A least-squares approach[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 2863-2869. doi: 10.1109/TIM. 2010.2046366.
    YU Gu and REN Fuji. Energy-efficient indoor localization of smart hand-held devices using Bluetooth[J]. IEEE Access, 2015, 3: 1450-1461. doi: 10.1109/ACCESS.2015.2441694.
    WEI Jiaxi, CHEN Yan, and SUN Shuo. An improved TDOA algorithm applied person localization system in coal mine[C]. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, 2011, 1: 428-431. doi: 10.1109/ICMTMA.2011.108.
    郝麗娜, 張秀均, 郁萬里, 等. 基于RSS手指模的煤礦井下WLAN定位方法[J]. 傳感器與微系統(tǒng), 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020.
    HAO Lina, ZHANG Xiujun, YU Wanli, et al. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technologies, 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020.
    GUO Jiateng, JIANG Jizhou, WU Lixin, et al. 3D modeling for mine roadway from laser scanning point cloud[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 4452-4455. doi: 10.1109/IGARSS.2016.7730160.
    王桃. 基于位置指紋的煤礦井下定位算法研究[D]. [碩士論文], 中國礦業(yè)大學, 2015: 29-39.
    WANG Tao. Research of positioning algorithm in coal mine based on location fingerprint[D]. [Master dissertation], China University of Mining Technology, 2015: 29-39.
    JIANG Qideng, MA Yongtao, LIU Kaihua, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. IEEE Sensors Journal, 2016, 16(10): 3764-3774. doi: 10.1109/JSEN. 2016.2535250.
    彭玉旭, 楊艷紅. 一種基于RSSI的貝葉斯室內(nèi)定位算法[J]. 計算機工程, 2012, 38(10): 237-240. doi: 10.3969/j.issn. 1000-3428.2012.10.073.
    PENG Yuxu and YANG Yanhong. Bayesian indoor location algorithm based on RSSI[J]. Computer Engineering, 2012, 38(10): 237-240. doi: 10.3969/j.issn.1000-3428.2012.10.073.
    XIAO Song, ROTARU M, and SYKULSKI J K. Adaptive weighted expected improvement with rewards approach in kriging assisted electromagnetic design[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2057-2060. doi: 10.1109/TMGA.2013.2240662.
    ZIMOS E, TOUMPAKARIS D, MUNTEANU A, et al. Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data[J]. IEEE Sensors Journal, 2017, 17(1): 139-150. doi: 10.1109/JSEN. 2016.2585042.
    WU Qiang and ZHOU Dingxuan. SVM soft margin classifiers: Linear programming versus quadratic programming[J]. Neural Computation, 2005, 17(5): 1160-1187. doi: 10.1162/ 0899766053491896.
    TAKAHASHI N, GUO J, and NISHI T. Global convergence of SMO algorithm for support vector regression[J]. IEEE Transactions on Neural Networks, 2008, 19(6): 971-982. doi: 10.1109/TNN.2007.915116.
    SHAMSHIRBAND S, PETKOVIC D, JAVIDNIA H, et al. Sensor data fusion by support vector regression methodologyA comparative study[J]. IEEE Sensors Journal, 2015, 15(2): 850-854. doi: 10.1109/JSEN.2014. 2356501.
    李明山, 王正明, 張儀. 基于均勻試驗設(shè)計的支持向量回歸參數(shù)選擇方法[J]. 系統(tǒng)仿真學報, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki.joss.2008.08.067.
    LI Mingshan, WANG Zhengming, and ZHANG Yi. New method for selecting parameters of support vector machine regression based on uniform design[J]. Journal of System Simulation, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki. joss.2008.08.067.
    何飛, 方金云. 基于自適應(yīng)的并行空間插值算法及仿真實現(xiàn)[J]. 系統(tǒng)仿真學報, 2014, 26(4): 761-768. doi: 10.16182/j.cnki. joss.2014.04.030.
    HE Fei and FANG Jinyun. Algorithm for spatial interpolation based on self-adaptive parallel programming[J]. Journal of System Simulation, 2014, 26(4): 761-768. doi: 10.16182/j.cnki.joss.2014.04.030.
    陳麗, 陳靜, 高清濤, 等. 基于支持向量機與反K近鄰的分類算法研究[J]. 計算機工程與應(yīng)用, 2010, 46(24): 135-137.
    CHEN Li, CHEN Jing, GAO Qingtao, et al. Classification algorithm research based on support vector machine and reverse K-nearest neighbor[J]. Computer Engineering and Applications, 2010, 46(24): 135-137.
    NI L M, LIU Y, LAN Y C, et al. LANDMARC: Indoor location sensing using active RFID[J]. Wireless Networks, 2004, 10(6): 701-710. doi: 10.1023/B:WINE.0000044029. 06344.DD.
  • 加載中
計量
  • 文章訪問數(shù):  1410
  • HTML全文瀏覽量:  140
  • PDF下載量:  216
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-04-12
  • 刊出日期:  2017-11-19

目錄

    /

    返回文章
    返回