Establishment Algorithm of Two Dimensional Fingerprint Database for Mine Workers Based on SVR-Kriging Interpolation
Funds:
The National Natural Science Foundation of China (61273302)
-
摘要: 為突破礦井工人指紋定位中1維模型在定位精度上的局限性,該文提出一種礦井工人2維指紋定位數(shù)據(jù)庫構(gòu)建算法,并通過SVR-Kriging插值法解決因2維模型帶來的數(shù)據(jù)采集工作量大的問題。首先,通過高斯濾波對采集的采樣點位置指紋信息進行預處理,并利用支持向量回歸由采樣點數(shù)據(jù)擬合變異函數(shù)。然后采用Kriging插值法補全2維網(wǎng)格劃分中的未采樣區(qū)域的位置指紋信息。最后綜合采樣點與插值點的位置指紋信息建立礦井工人指紋信息數(shù)據(jù)庫,為后續(xù)礦井工人指紋定位奠定基礎(chǔ)。仿真結(jié)果表明,該文算法在減少數(shù)據(jù)采集工作量的同時保證了算法的可行性與有效性,且在進行位置指紋定位時能夠保證較高的精度。Abstract: In order to overcome the limitation of one-dimensional model in accuracy of mine workers fingerprint location, a two-dimensional fingerprint location database algorithm for mine workers is proposed. The problem of the large data acquisition workload brought by the two-dimensional model is also solved by SVR-Kriging interpolation. Firstly, Gaussian filtering is used to preprocess the fingerprint information of the collected sampling point and the variation function is fitted by the Support Vector Regression (SVR). Then, the Kriging interpolation is used to complete the position fingerprint information of the un-sampled area in the two-dimensional meshing. Finally, the fingerprint location database of the mine workers is established by integrating the location fingerprint information of the sampling points and the interpolation points, laying the foundation for the follow-up mine workers fingerprint location. The simulation results show that the proposed algorithm can reduce the workload of data acquisition while ensuring the feasibility and the effectiveness of the algorithm and can guarantee high accuracy when positioning is performed through the location fingerprint.
-
Key words:
- Mine positioning /
- Gauss filter /
- Variogram /
- Support Vector Regression (SVR) /
- Kriging interpolation
-
胡青松, 張申, 吳立新, 等. 礦井動目標定位: 挑戰(zhàn)、現(xiàn)狀與趨勢[J]. 煤炭學報, 2016, 41(5): 1059-1068. doi: 10.13225/ j.cnki.jccs.2015.1267. HU Qingsong, ZHANG Shen, WU Lixin, et al. Localization techniques of mobile objects in coal mines: Challenges, solutions and trends[J]. Journal of China Coal Society, 2016, 41(5): 1059-1068. doi: 10.13225/j.cnki.jccs.2015.1267. WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on Bayesian filter using chrip-spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. doi: 10.1109/TIE.2011.2165462. WANG Jie, GAO Qinghua, PAN Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495. ERRINGTON A F C, DAKU B L F, and PRUGGER A F. Initial position estimation using RFID tags: A least-squares approach[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 2863-2869. doi: 10.1109/TIM. 2010.2046366. YU Gu and REN Fuji. Energy-efficient indoor localization of smart hand-held devices using Bluetooth[J]. IEEE Access, 2015, 3: 1450-1461. doi: 10.1109/ACCESS.2015.2441694. WEI Jiaxi, CHEN Yan, and SUN Shuo. An improved TDOA algorithm applied person localization system in coal mine[C]. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, 2011, 1: 428-431. doi: 10.1109/ICMTMA.2011.108. 郝麗娜, 張秀均, 郁萬里, 等. 基于RSS手指模的煤礦井下WLAN定位方法[J]. 傳感器與微系統(tǒng), 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020. HAO Lina, ZHANG Xiujun, YU Wanli, et al. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technologies, 2012, 31(9): 46-49. doi: 10.13873/j.1000-97872012.09.020. GUO Jiateng, JIANG Jizhou, WU Lixin, et al. 3D modeling for mine roadway from laser scanning point cloud[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 4452-4455. doi: 10.1109/IGARSS.2016.7730160. 王桃. 基于位置指紋的煤礦井下定位算法研究[D]. [碩士論文], 中國礦業(yè)大學, 2015: 29-39. WANG Tao. Research of positioning algorithm in coal mine based on location fingerprint[D]. [Master dissertation], China University of Mining Technology, 2015: 29-39. JIANG Qideng, MA Yongtao, LIU Kaihua, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. IEEE Sensors Journal, 2016, 16(10): 3764-3774. doi: 10.1109/JSEN. 2016.2535250. 彭玉旭, 楊艷紅. 一種基于RSSI的貝葉斯室內(nèi)定位算法[J]. 計算機工程, 2012, 38(10): 237-240. doi: 10.3969/j.issn. 1000-3428.2012.10.073. PENG Yuxu and YANG Yanhong. Bayesian indoor location algorithm based on RSSI[J]. Computer Engineering, 2012, 38(10): 237-240. doi: 10.3969/j.issn.1000-3428.2012.10.073. XIAO Song, ROTARU M, and SYKULSKI J K. Adaptive weighted expected improvement with rewards approach in kriging assisted electromagnetic design[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2057-2060. doi: 10.1109/TMGA.2013.2240662. ZIMOS E, TOUMPAKARIS D, MUNTEANU A, et al. Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data[J]. IEEE Sensors Journal, 2017, 17(1): 139-150. doi: 10.1109/JSEN. 2016.2585042. WU Qiang and ZHOU Dingxuan. SVM soft margin classifiers: Linear programming versus quadratic programming[J]. Neural Computation, 2005, 17(5): 1160-1187. doi: 10.1162/ 0899766053491896. TAKAHASHI N, GUO J, and NISHI T. Global convergence of SMO algorithm for support vector regression[J]. IEEE Transactions on Neural Networks, 2008, 19(6): 971-982. doi: 10.1109/TNN.2007.915116. SHAMSHIRBAND S, PETKOVIC D, JAVIDNIA H, et al. Sensor data fusion by support vector regression methodologyA comparative study[J]. IEEE Sensors Journal, 2015, 15(2): 850-854. doi: 10.1109/JSEN.2014. 2356501. 李明山, 王正明, 張儀. 基于均勻試驗設(shè)計的支持向量回歸參數(shù)選擇方法[J]. 系統(tǒng)仿真學報, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki.joss.2008.08.067. LI Mingshan, WANG Zhengming, and ZHANG Yi. New method for selecting parameters of support vector machine regression based on uniform design[J]. Journal of System Simulation, 2008, 20(8): 2195-2199. doi: 10.16182/j.cnki. joss.2008.08.067. 何飛, 方金云. 基于自適應(yīng)的并行空間插值算法及仿真實現(xiàn)[J]. 系統(tǒng)仿真學報, 2014, 26(4): 761-768. doi: 10.16182/j.cnki. joss.2014.04.030. HE Fei and FANG Jinyun. Algorithm for spatial interpolation based on self-adaptive parallel programming[J]. Journal of System Simulation, 2014, 26(4): 761-768. doi: 10.16182/j.cnki.joss.2014.04.030. 陳麗, 陳靜, 高清濤, 等. 基于支持向量機與反K近鄰的分類算法研究[J]. 計算機工程與應(yīng)用, 2010, 46(24): 135-137. CHEN Li, CHEN Jing, GAO Qingtao, et al. Classification algorithm research based on support vector machine and reverse K-nearest neighbor[J]. Computer Engineering and Applications, 2010, 46(24): 135-137. NI L M, LIU Y, LAN Y C, et al. LANDMARC: Indoor location sensing using active RFID[J]. Wireless Networks, 2004, 10(6): 701-710. doi: 10.1023/B:WINE.0000044029. 06344.DD. -
計量
- 文章訪問數(shù): 1410
- HTML全文瀏覽量: 140
- PDF下載量: 216
- 被引次數(shù): 0