基于四維電子密度的地球同步軌道SAR電離層時(shí)變影響校正方法
doi: 10.11999/JEIT170034
基金項(xiàng)目:
國家自然科學(xué)基金面上項(xiàng)目(61571417)
Correction Method Based on 4-D Electronic Density of Ionospheric Effects Induced by Temporal Variability on GEOSAR
Funds:
Supported by the National Natural Science Foundation of China (61571417)
-
摘要: 電離層在地球同步軌道SAR長合成孔徑時(shí)間內(nèi)具有明顯的時(shí)變特性,這使得傳統(tǒng)的基于電離層總電子含量(TEC)固定值的校正方法不再適用。為此,該文提出基于4維電子密度的地球同步軌道SAR成像補(bǔ)償方法。通過基于電離層實(shí)測數(shù)據(jù)的半物理仿真,對校正方法進(jìn)行實(shí)驗(yàn)驗(yàn)證,結(jié)果表明該方法可以有效地校正電離層時(shí)變特性對地球同步軌道SAR成像質(zhì)量的影響。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 地球同步軌道 /
- 電離層 /
- 校正
Abstract: The conventional correction method based on invariable TEC is no longer applicable to GEOSAR, because the temporal variability of ionosphere exits in synthetic aperture time of GEOSAR. In this paper, a correction method based on 4-D electronic density is put forward. This method is validated using actual data of ionosphere and the results indicate that this method can correct the ionospheric effects induced by temporal variability on GEOSAR effectively.-
Key words:
- SAR /
- Geosynchronous Earth Orbit (GEO) /
- Ionosphere /
- Correction
-
LI Caipin and HE Mingyi. Imaging algorithm for geosynchronous orbit SAR based on chirp_z transform and azimuth scaling[J]. Journal of Electronics Information Technology, 2015, 37(7): 1736-1742. doi: 10.11999/JEIT 141491. 李財(cái)品, 何明一. 基于Chirp_z變換與方位變標(biāo)地球同步軌道SAR成像算法[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1736-1742. doi: 10.11999/JEIT141491. TOMIYASU K and PACELLI J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3): 324-329. doi: 10.1109/TGRS.1983.350561. 黃麗佳. 中高軌道SAR 成像算法研究[D]. [博士論文], 中國科學(xué)院大學(xué), 2011: 1-8. HUANG Lijia. The study of medium-earth-orbit SAR imaging algorithm[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2011: 1-8. 洪文, 林赟, 譚維賢, 等. 地球同步軌道圓跡SAR研究[J]. 雷達(dá)學(xué)報(bào), 2015, 4(8): 241-253. doi: 10.12000/JR15062. HONG Wen, LIN Yun, TAN Weixian, et al. Study on geosynchronous circular SAR[J]. Journal of Radars, 2015, 4(8): 241-253. doi: 10.12000/JR15062. 張升, 孫光才, 邢孟道. GEOSAR 艦船目標(biāo)三維轉(zhuǎn)動(dòng)對檢測信噪比影響分析[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1261-1265. doi: 10.11999/JEIT150821. ZHANG Sheng, SUN Guangcai, and XING Mengdao. Analysis of the SNR for 3-D rotating sea ship detecting in geosynchronous synthetic aperture radar system[J]. Journal of Electronics Information Technology, 2016, 38(5): 1261-1265. doi: 10.11999/JEIT150821. CHEN J and ZEBKER H A. Ionospheric artifacts in simultaneous L-band ionospheric artifacts in simultaneous L-band InSAR and GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1227-1239. doi: 10.1109/TGRS.2011.2164805. 馮健, 甄衛(wèi)民, 吳振森, 等. 電離層閃爍對星載P波段SAR的影響分析[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1443-1449. doi: 10.11999/JEIT140948. FENG Jian, ZHEN Weimin, WU Zhensen, et al. Effects of ionospheric scintillation on P-band spaceborne SAR[J]. Journal of Electronics Information Technology, 2015, 37(6): 1443-1449. doi: 10.11999/JEIT140948. 黃小紅, 文貢堅(jiān). L波段雷達(dá)電離層高速運(yùn)動(dòng)目標(biāo)ISAR成像補(bǔ)償方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646. HUANG Xiaohong and WEN Gongjian. Compensating method of L-band radar ISAR imaging for ionosphereic target with high-velocity[J]. Journal of Electronics Information Technology, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646. LIU J and KUGA Y. Ionospheric effects on SAR imaging: A numerical study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 939-947. doi: 10.1109/TGRS. 2003.811813. JUNG Hyungsup, LEE Dongtaek, LU Zhong, et al. Ionospheric correction of SAR interferograms by multipleaperture interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3191-3199. doi: 10.1109/TGRS.2012.2218660. 周晨, 雷勇, 趙正予, 等. 基于GPS 層析反演和斜向返回探測反演的電離層二維電子密度重構(gòu)[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1496-1502. doi: 10.11999/JEIT150981. ZHOU Chen, LEI Yong, ZHAO Zhengyu, et al. Two dimensional ionospheric electron density reconstruction based on GPS tomography and oblique backscatter inversion [J]. Journal of Electronics Information Technology, 2016, 38(6): 1496-1502. doi: 10.11999/JEIT150981. HELMBOLDT J F, LAZIO T J W, INTERMA H T, et al. Highprecision measurements of ionospheric TEC gradients with the very large array VHF system[J]. Radio Science, 2012, 47(6): 1-13. doi: 10.1029/2011RS004883. 李亮. 電離層對中高軌SAR成像質(zhì)量影響及測量校正方法研究[D]. [博士論文], 中國科學(xué)院大學(xué), 2014: 117-120. LI Liang. Study on ionospheric effects and correction method for medium-earth-orbit SAR[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2014: 117-120. RUIZ R J, BROQUETAS A, MAKHOUL E, et al. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6379-6391. doi: 10.1109/TGRS.2013.2296357. ZHAO Bingji, QI Xiangyang, SONG Hongjun, et al. An accurate range model based on the fourth-order Doppler parameters for geosynchronous SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 205-209. doi: 10.1109/ LGRS.2013.2252878. 李亮, 洪峻, 明峰, 等. 電離層時(shí)空變化對中高軌SAR 成像質(zhì)量的影響分析[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 915-922. doi: 10.3724/SP.J.1146.2013.00859. LI Liang, HONG Jun, MING Feng, et al. Study on ionospheric effects induced by spatio-temporal variability on medium-earth-orbit SAR imaging quality[J]. Journal of Electronics Information Technology, 2014, 36(4): 915-922. doi: 10.3724/SP.J.1146.2013.00859. -
計(jì)量
- 文章訪問數(shù): 1136
- HTML全文瀏覽量: 187
- PDF下載量: 218
- 被引次數(shù): 0