一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

支持聯(lián)機分析處理的推特用戶興趣維層次提取方法

俞東進 倪智勇 孫景超

俞東進, 倪智勇, 孫景超. 支持聯(lián)機分析處理的推特用戶興趣維層次提取方法[J]. 電子與信息學報, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030
引用本文: 俞東進, 倪智勇, 孫景超. 支持聯(lián)機分析處理的推特用戶興趣維層次提取方法[J]. 電子與信息學報, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030
YU Dongjin, NI Zhiyong, SUN Jingchao. Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030
Citation: YU Dongjin, NI Zhiyong, SUN Jingchao. Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2081-2088. doi: 10.11999/JEIT170030

支持聯(lián)機分析處理的推特用戶興趣維層次提取方法

doi: 10.11999/JEIT170030
基金項目: 

國家自然科學基金項目(61100043, 61472112),浙江省自然科學基金資助項目(LY12F02003),浙江省科技計劃重點資助項目(2017C01010, 2016F50014)

Extracting Dimension Hierarchy of Tweeters Interests for On-line Analytical Processing

Funds: 

The National Natural Science Foundation of China (61100043, 61472112), The Natural Science Foundation of Zhejiang Province (LY12F02003), The Key Science and Technology Project of Zhejiang Province (2017C01010, 2016F50014)

  • 摘要: 從海量推特數(shù)據(jù)中探索用戶興趣的分布規(guī)律和相關性有利于實現(xiàn)精確的個性化推薦。聯(lián)機分析處理(On- Line Analytical Processing, OLAP)提供了一種適合人們探究數(shù)據(jù)的直觀形式。將OLAP技術(shù)應用于推特數(shù)據(jù)的關鍵是如何挖掘和構(gòu)建推特用戶的興趣維層次。針對現(xiàn)有方法只能提取單一層次興趣的不足,該文提出一種支持聯(lián)機分析處理的推特用戶興趣維層次提取方法。該方法首先通過RestAPI獲取推特數(shù)據(jù),然后通過改進的LDA(Latent Dirichlet Allocation)模型挖掘用戶的興趣和子興趣,最后在此基礎上構(gòu)建興趣維層次結(jié)構(gòu)。實驗評估了該方法的模型效果和可擴展性,并證實與LDA和hLDA相比可以更有效地提取出推特用戶的興趣維層次并應用于聯(lián)機分析處理。
  • ZHANG Yubao, RUAN Xin, WANG Haining, et al. Twitter trends manipulation: A first look inside the security of Twitter trending[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 144-156. doi: 10.1109/ TIFS.2016.2604226.
    BEHESHTI S M R, BENATALLAH B, and MOTAHARI- NEZHAD H R. Scalable graph-based OLAP analytics over process execution data[J]. Distributed and Parallel Databases, 2016, 34(3): 379-423. doi: 10.1007/s10619-014-7171-9.
    OUKID Lamia, BENBLIDIA Nadjia, BENTAYEB Fadila, et al. Contextualized text OLAP based on information retrieval [J]. International Journal of Data Warehousing and Mining, 2015, 11(2): 1-21. doi: 10.4018/ijdwm.2015040101.
    DRZADZEWSKI G and TOMPA F W. Partial materialization for online analytical processing over multi- tagged document collections[J]. Knowledge and Information Systems, 2016, 47(3): 697-732. doi: 10.1007/s10115-015- 0871-2.
    SISWANTO E, KHODRA M L, and DEWI L J E. Prediction of interest for dynamic profile of Twitter user[C]. International Conference of Advanced Informatics: Concept, Theory and Application, Bandung, 2014: 266-271.
    LIM K H and DATTA A. Interest classification of Twitter users using Wikipedia[C]. International Symposium on Wikis and Open Collaboration, Hong Kong, 2013: 1-2.
    PU X, CHATTI M A, US H T, et al. Wiki-LDA: A mixed- method approach for effective interest mining on Twitter data[C]. The 8th International Conference on Computer Supported Education, Rome, 2016: 426-433.
    XU Z, RU L, XIANG L, et al. Discovering user interest on Twitter with a modified author-topic model[C]. IEEE/WIC/ ACM International Conference on Web Intelligence, Lyon, 2011: 422-429.
    ZHAO W X, JIANG J, WENG J S, et al. Comparing Twitter and traditional media using topic models[C]. The 33rd European Conference on IR Research, Dublin, 2011: 338-349.
    BLEI D M, GRIFFITH T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process[C]. International Conference on Neural Information Processing Systems, Vancouver, 2003: 17-24.
    OUKID L, BOUSSAID O, BENBLIDIA N, et al. TLabel: A new OLAP aggregation operator in text cubes[J]. International Journal of Data Warehousing and Mining, 2016, 12(4): 54-74. doi: 10.4018/IJDWM.2016100103.
    BERBEL TDRL and GONZLEZ SM. How to help end users to get better decisions? personalising OLAP aggregation queries through semantic recommendation of text documents[J]. International Journal of Business Intelligence Data Mining, 2015, 10(1): 1-18. doi: 10.1504/ IJBIDM.2015.069022.
    BOUAKKAZ M, LOUDCHER S, and OUINTEN Y. OLAP textual aggregation approach using the Google similarity distance[J]. International Journal of Business Intelligence Data Mining, 2016, 11(1): 31-48. doi: 10.1504/IJBIDM.2016. 076425.
    BEN K M, FEKI J, KHROUF K, et al. OLAP of the tweets: from modeling toward exploitation[C]. The 8th International Conference on Research Challenges in Information Science IEEE, Marrakech, 2014: 1-10.
    REHMAN N U, MANSMANN S, WEILER A, et al. Building a data warehouse for Twitter stream exploration[C]. IEEE/ ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, 2012: 1341-1348.
    REHMAN N U, WEILER A, and SCHOLL M H. OLAPing social media: The case of Twitter[C]. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, Ontario, Canada, 2013: 1139-1146.
    BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022.
  • 加載中
計量
  • 文章訪問數(shù):  1315
  • HTML全文瀏覽量:  179
  • PDF下載量:  271
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-08-16
  • 刊出日期:  2017-09-19

目錄

    /

    返回文章
    返回