一種面向高異質(zhì)性極化SAR圖像的等效視數(shù)非監(jiān)督估計方法
doi: 10.11999/JEIT170014
基金項目:
國家自然科學(xué)基金(61331017), 高分三號共性關(guān)鍵技術(shù)(30-Y20A12-9004-15/16, 03-Y20A11-9001-15/16)
Unsupervised Estimation of the Equivalent Number of Looks in PolSAR Image with High Heterogeneity
Funds:
The National Natural Science Foundation of China (61331017), The GF-3 High-Resolution Earth Observation System (30-Y20A12-9004-15/16, 03-Y20A11-9001-15/16)
-
摘要: 等效視數(shù)(ENL)是極化SAR多視數(shù)據(jù)統(tǒng)計模型的重要參數(shù)。而一些極化SAR圖像的自動化應(yīng)用中,需要在沒有人工干預(yù)下實現(xiàn)ENL非監(jiān)督估計?,F(xiàn)有的等效視數(shù)非監(jiān)督估計方法在異質(zhì)程度較高的圖像中就難以得到準(zhǔn)確估計結(jié)果。針對這一問題,該文提出一種將混合區(qū)域剔除與紋理信息聚類相結(jié)合的等效視數(shù)非監(jiān)督估計方法,有效地減弱了地物混合及紋理兩類主要異質(zhì)因素對估計結(jié)果的影響。通過仿真數(shù)據(jù)和不同復(fù)雜度的實際圖像驗證了該方法的有效性。
-
關(guān)鍵詞:
- 極化SAR /
- 乘積模型 /
- 異質(zhì)性 /
- 等效視數(shù) /
- 非監(jiān)督估計
Abstract: Equivalent Number of Looks (ENL) is an important parameter in statistical modelling of multi-look Polarimetric SAR (PolSAR) data. In some automated applications of PolSAR images, it is necessary to estimate the ENL in an unsupervised way without any manual intervention. The existing unsupervised estimation of ENL can not obtain accurate estimates for the images with high heterogeneity. To address this issue, a novel unsupervised estimation method is proposed here. It combines the mixture elimination and clustering based on texture, which reduces the effect of two main heterogeneity factors, mixture and texture. The validity of this method is evaluated with simulated and real data of different complexity. -
XU Qiao, CHEN Qihao, YANG Shuai, et al. Superpixel- based classification using K distribution and spatial context for polarimetric SAR images[J]. Remote Sensing, 2016, 8(8): 619. doi: 10.3390/rs8080619. DOULGERIS A. An automatic U distribution and Markov random field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1819-1827. doi: 10.1109/TGRS.2014.2349575. LIU Fang, SHI Junfei, JIAO Lichen, et al. Hierarchical semantic model and scattering mechanism based PolSAR image classification[J]. Pattern Recognition, 2016, 59: 325-342. doi: 10.1016/j.patcog.2016.02.020. AKBARI V, ANFINSEN S, DOULGERIS A, et al. Polarimetric SAR change detection with the complex Hotelling Lawley trace statistic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3953-3966. doi: 10.1109/TGRS.2016.2532320. LIU Meng, ZHANG Hong, WANG Chao, et al. Polarimetric synthetic aperture radar change detection for specific land cover types[J]. International Journal of Digital Earth, 2016, 8(4): 334-344. doi: 10.1080/17538947.2013.872702. ANFINSEN S, DOULGERIS A, and ELTOFT T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3795-3809. doi: 10.1109/ TGRS.2009.2019269. LIU Tao, CUI Haogui, XI Zemin, et al. Texture-invariant estimation of equivalent number of looks based on trace moments in polarimetric radar imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1129-1133. doi: 10.1109/LGRS.2013.2288097. CUI Yi, ZHOU Guangyi, YANG Jian, et al. Unsupervised estimation of the equivalent number of looks in SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 710-714. doi: 10.1109/LGRS.2010.2102335. LEE J and HOPPEL K. Noise modeling and estimation of remotely-sensed images[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 1989: 1005-1008. doi: 10.1109/IGARSS.1989.579061. LEE J, HOPPEL K, and MANGO S. Unsupervised estimation of speckle noise in radar images[J]. International Journal of Imaging Systems and Technology, 1992, 4(4): 298-305. doi: 10.1002/ima.1850040409. FOUCHER S, BOUCHER J, and BENIE G. Maximum likelihood estimation of the number of looks in SAR images in microwaves, radar and wireless communications[C]. 13th International Conference on MIKON-2000, 2000, 2: 657-660. doi: 10.1109/MIKON.2000.914020. HU Dingsheng, ANFINSEN S, TAO Ding, et al. Investigation of variations in the equivalent number of looks for polarimetric channels[C]. International Workshop on Science and Applications SAR Polarimetry and Polarimetric Interferometry, Frascati, Rome, 2015. OLIVER C and QUEGAN S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC 27613: SciTech Publishing, Inc., 2004: 75-154. FREITAS C, FRERY A, and CORREIA A. The polarimetric G distribution for SAR data analysis[J]. Environmetrics, 2005, 16(1): 13-31. doi: 10.1002/env.658. ANFINSEN S. Statistical analysis of multilook polarimetric radar images with the Mellin transform[D]. [Ph.D. dissertation], University of Tromso, 2010. LEE J, SCHULER D, LANG R, et al. K-distribution for multi-look processed polarimetric SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, 1994: 2179-2181. doi: 10.1109/ IGARSS.1994.399685. BOMBRUN L and BEAULIEU J. Fisher distribution for texture modeling of polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 512-516. doi: 10.1109/LGRS.2008.923262. ANFINSEN S and ELTOFT T. Application of the matrix- variate mellin transform to analysis of polarimetric radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2281-2295. doi: 10.1109/TGRS.2010. 2103945. ZHU Tingting, LI Fei, HEYGSTER G, et al. Antarctic sea-ice classification based on conditional random fields from RADARSAT-2 dual-polarization satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2451-2467. doi: 10.1109/ JSTARS.2016.2551318. FORS A, BREKKE C, DOULGERIS A, et al. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band[J]. The Cryosphere, 2016, 10(1): 401-415. doi: 10.5194/tc-10-401-2016. -
計量
- 文章訪問數(shù): 1517
- HTML全文瀏覽量: 138
- PDF下載量: 394
- 被引次數(shù): 0