基于小波變換的多分辨率錐束CT圖像快速三維重建算法
doi: 10.11999/JEIT170003
-
1.
(山東大學(xué)信息科學(xué)與工程學(xué)院 濟(jì)南 250100) ②(山東師范大學(xué)物理與電子科學(xué)學(xué)院 濟(jì)南 250014)
國(guó)家自然科學(xué)基金(61471226),山東省自然科學(xué)杰出青年基金(JQ201516)
Fast 3D Reconstruction Algorithm of Multi-resolution Cone Beam CT Image Based on Wavelet Transform
-
1.
(Institute of Information Science and Engineering, Shandong University, Jinan 250100, China)
-
2.
(Institute of Physics and Electronics, Shandong Normal University, Jinan 250014, China)
The National Natural Science Foundation of China (61471226), The Distinguished Young Scholars of Shandong Province(JQ201516)
-
摘要: 為了解決FDK重建算法在錐束CT重建中運(yùn)算量大,耗時(shí)較多,以及針對(duì)不同的應(yīng)用環(huán)境提供不同分辨率的3維醫(yī)學(xué)圖像問(wèn)題,該文提出一種基于小波變換的多分辨率錐束CT圖像快速3維重建算法。首先對(duì)采集到的投影圖像進(jìn)行相應(yīng)尺度的小波變換,得到各尺度小波分解系數(shù),選擇相應(yīng)尺度的小波系數(shù)進(jìn)行FDK重建,可以得到相應(yīng)低分辨率的3維圖像數(shù)據(jù),還可根據(jù)需要由得到的低分辨率重建數(shù)據(jù)分別沿著徑向取斷層圖像,進(jìn)行相應(yīng)的小波逆變換,進(jìn)而得到高分辨率的3維圖像數(shù)據(jù)。實(shí)驗(yàn)數(shù)據(jù)表明,該方法不僅能夠得到不同分辨率的3維圖像數(shù)據(jù),而且相較于傳統(tǒng)的FDK算法生成分辨率相同、精度相近的高分辨率3維圖像數(shù)據(jù),重建速度可以提高1倍以上。Abstract: To solve the large amount of computation, time-consuming problems of the FDK reconstruction algorithm for cone beam CT reconstruction, and different resolutions for different application environments of 3D medical image, this paper proposes a fast reconstruction algorithm of multi-resolution cone beam CT image based on wavelet transform. Firstly, the corresponding wavelet transform for projection images are obtained, and the corresponding scale wavelet coefficients are selected for FDK reconstruction. Thus, 3D image data of the low resolution are obtained. According to need, the high resolution 3D image data can also be obtained by the inverse wavelet transform of the radial images obtained from low resolution. The experimental data shows that this method can not only provide a different resolution of the 3D image data, but also increase the reconstruction speed more than one times when the same resolution and similar precision high resolution 3D image data is obtained compared with the traditional FDK algorithm.
-
Key words:
- Cone beam CT /
- FDK reconstruction /
- Wavelet transform /
- Multi-resolution
-
ZOU Xiaobing and ZENG Li. Weighted FDK algorithm from spiral cone-beam computed tomography with displaced detector[J]. Journal of Medical Imaging and Health Informatics, 2015, 5(2): 290-295. doi: 10.1166/jmihi.2015.1389. 閆鑌, 韓玉, 魏峰, 等. 錐束CT超視野成像重建算法綜述[J]. CT理論與應(yīng)用研究, 2013, 22(2): 373-384. YAN Bin, HAN Yu, WEI Feng, et al. Review of algorithms for over FOV size object in cone-beam CT[J]. ComputerizedTomography Theory and Application, 2013, 22(2): 373-384. FELDKAMP L, DAVIS L C, and KRESS J. Practical conebeam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619. doi: 10.1364/JOSAA. 1.000612. WANG Ge, LIN Teinhsiang, and CHENG Pingchin. A general cone-beam reconstruction algorithm[J]. IEEE Transactions on Medical Imaging, 1993, 12(3): 486-496. doi: 10.1109/42.241876. TURBELL H. Cone-beam reconstruction using filtered backprojection[D]. [Ph.D. dissertation], The Linkoping University, 2001. GRASS M, KOHLER T, and PROKSA R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories [J]. Physics in Medicine Biology, 2001, 46(6): 1595-1610. doi: 10.1088/0031-9155/46/6/301. JIN Xinyu, BAI Fudong, and LAN Yizheng. A novel interpolation algorithm to improve FDK performance[C]. International Symposium on Computational Intelligence and Design, Hangzhou, 2015: 247-249. doi: 10.1109/ISCID.2015.37. DOMINGUEZ J, ASSIS J, et al. Speeding up the FDK Algorithm for tomographic image reconstruction in multicore processors with hyper-threading technology[J]. IEEE Latin America Transactions, 2015, 13(1): 359-364. doi: 10.1109/ TLA.2015.7040670. 張文昆, 閆鑌, 蔡愛(ài)龍, 等. 選擇性重排FDK算法及其GPU加速優(yōu)化[J]. CT理論與應(yīng)用研究, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07. ZHANG Wenkun, YAN Bin, CAI Ailong, et al. Selective projection-rebin FDK algorithm and its efficient GPU implementation[J]. Computerized Tomography Theory and Application, 2015, 24(3): 383-392. doi: 10.15953/j.1004-4140.2015.24.03.07. GUO Bin, LIU Bo, and ZHOU Fugen. A modified FDK with misaligned parameters of flat-panel detector in cone-beamCT[C]. IEEE International Conference on Medical Imaging Physics and Engineering, Shenyang, 2013: 223-227. doi: 10. ZHANG Yan. Three-dimensional image quality evaluation and improvement in flat-panel detector based cone-beam CT image[D]. [Ph.D. dissertation], The Rochester University, 2009. MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. doi: 10.1109/34.192463. WANG Yu, OU Zongying, and WANG Feng. Modified FDKalgorithm for cone-beam reconstruction with efficient weighting scheme[C]. World Congress on Intelligent Control and Automation, Dalian, 2006: 9703-9707. doi: 10.1109/ WCICA.2006.1713887. ZHANG Feng, YAN Bin, and LI Lei. An image reconstructionstrategy for truncated projections of planar object in cone- beam CT[C]. International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015: 1113-1117. doi: 10.1109/FSKD.2015.7382098. YANG Hongcheng, GAO Xin, XU Chuan, et al. A backprojection weight-based FDK reconstruction algorithm for cone beam digital subtraction angiography[C]. InternationalConference on Biomedical Engineering and Informatics, Chongqing, 2012: 1-5. doi: 10.1109/BMEI.2012.6513031. /ICMIPE.2013.6864539. -
計(jì)量
- 文章訪問(wèn)數(shù): 1400
- HTML全文瀏覽量: 140
- PDF下載量: 269
- 被引次數(shù): 0