基于穩(wěn)定分布噪聲稀疏性及最優(yōu)匹配的跳頻信號參數(shù)估計
doi: 10.11999/JEIT161397
基金項目:
國家自然科學(xué)基金(61201286),陜西省自然科學(xué)基金(2014JM8304)和中央高校基本科研業(yè)務(wù)費專項資金(K5051202013)
Parameter Estimation of FH Signals Based on Stable Noise Sparsity and Optimal Match
Funds:
The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304), The Fundamental Research Funds for the Central Universities (K5051202013)
-
摘要: 目前基于壓縮感知的跳頻信號參數(shù)估計方法大多是在高斯背景噪聲下進行的研究,而在非高斯穩(wěn)定分布脈沖噪聲環(huán)境下,已有基于高斯噪聲數(shù)學(xué)模型設(shè)計的算法性能下降。針對上述問題,該文分析了穩(wěn)定分布噪聲的大幅值脈沖滿足近似稀疏性條件,利用跳頻信號與噪聲之間的時域特征差異將信噪分離,實現(xiàn)噪聲抑制。并在壓縮感知框架下,建立與跳頻信號特點相匹配的3參數(shù)字典,采用最優(yōu)匹配(Optimal Match, OM)方法對跳頻信號自適應(yīng)分解,獲取匹配原子,基于這些時頻原子包含的信息估計跳頻信號的參數(shù)。仿真驗證表明,在穩(wěn)定分布噪聲中,與常規(guī)的跳頻信號估計方法相比,該文提出的先利用噪聲稀疏性去噪,再采用最優(yōu)匹配提取跳頻信號參數(shù)的方法(Sparsity-OM, SOM),能夠較好地抑制脈沖噪聲,獲得準確的參數(shù)信息,具有良好的魯棒特性。Abstract: Currently, FH signal parameter estimation methods based on compressed sensing are mostly under the assumption of Gaussian noise background. In non-Gaussianstable distribution noise conditions, the algorithms based on Gaussian noise model suffer undesirable performance degradation. In this paper, it is analyzed and concluded that the spike pulses of the stable noise approximately meet sparse conditions. By using the differences of the characteristics in the time domain, the FH signal and the noise can be easily separated, and the goal of suppressing noise can be achieved. Under the framework of compressed sensing, the three-parameter dictionary is constructed based on the characteristics of FH signals, then the Optimal Match (OM) for adaptive FH signal decomposition is used to obtain the matching atoms and the FH signal parameters are estimated based on the information contained by these time frequency atoms. Simulation results show that compared with the conventional FH signal parameter estimation methods, the proposed Sparsity-OM (SOM), which uses noise sparsity to suppress the noise and then adopts the OM algorithm, improves the estimation accuracy of FH signal parameters and it is more robust to the stable distribution noise.
-
ZHAO L, WANG L, and BI G. Blind frequency hopping spectrum estimation: A Bayesian approach[C]. IEEE Fourth International Conference on Big Data and Cloud Computing, IEEE, 2015: 669-675. doi: 10.1109/BDCloud.2014.137. 呂晨杰. 基于時頻分析的跳頻信號檢測與參數(shù)估計技術(shù)[D]. [碩士論文]. 解放軍信息工程大學(xué), 2015. L Chenjie. Detection and parameters estimation of frequency hopping signals based on time-frequency analysis [D]. [Master dissertation], PLA Information Engineering University, 2015. ZHANG H, CHEN C F, and WANG H Q. A parameter estimation method for FH signal based on SPWVD[J]. The Journal of China Universities of Posts and Telecommunications, 2011, 18: 133-136. CHAVALI V G and SILVA C R C M D. Detection of digital amplitude-phase modulated signals in symmetric alpha- stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375. ZENG Y, LIU X, and LI O. A new method of Frequency- Hopping (FH) signal detection[J]. Journal of Electronics (China), 2011, 28(4): 468-473. 陳立軍, 張海勇, 韓東, 等. 局域波分析在跳頻信號參數(shù)估計中的應(yīng)用[J]. 電聲技術(shù), 2015, 39(10): 61-64. doi: 10.16311/j. audioe.2015.10.14. CHEN Lijun, ZHANG Haiyong, HAN Dong, et al. Application of local wave analysis in the parameter estimation of frequency-hopping signal[J]. Audio Engineering, 2015, 39(10): 61-64. doi: 10.16311/j.audioe.2015.10.14. 郭建濤, 劉瑞杰, 陳新武. 用于跳頻分量選取的修正適應(yīng)度距離比粒子群算法[J]. 重慶郵電大學(xué)學(xué)報(自然科學(xué)版), 2015, 27(1): 27-30. doi: 10.3979/j.issn.1673-825X.2015.01.005. GUO Jiantao, LIU Ruijie, and CHEN Xinwu. Modified fitness-distance ratio based particle swarm optimizer for selection of frequency hopping components[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(1): 27-30. doi: 10.3979/j. issn.1673-825X.2015.01.005. WU Z and HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460: 1597-1611. AN J K, TIAN B, and YI K C. Intrinsic time-scale decompositiom based algorithm for the hop rate estimation of frequency hopping signal[J]. Systems Engineering and Electronics, 2011, 33(1): 166-169. 呂晨杰, 王斌, 王開勛. 采用圖像處理的跳頻信號參數(shù)盲估計[J]. 電訊技術(shù), 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001- 893x.2015.08.003. L Chenjie, WANG Bin, and WANG Kaixun. Blind parameter estimation of frequency hopping signals by image processing[J]. Telecommunication Engineering, 2015, 55(8): 842-847. doi: 10.3969/j.issn.1001-893x.2015.08.003. JIN Y and LIU J. Parameter estimation of frequency hopping signals in alpha stable noise environment[C]. IEEE, Proceedings of 11th International Conference on Signal Processing, Beijing, China, 2013: 250-253. DAVID W, GONZALEZ J G, and ARCE G R. Robust time- frequency representations for signals in alpha stable noise using fractional lower-order statistics[C]. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Alberta, Canada, 1997: 415-419. YUE B, PENG Z, and HE Y. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. International Conference on Computational and Information Sciences, IEEE Computer Society, 2013: 1001-1004. BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 56(4): 118-120. ADCOCK B and HANSEN A C. Generalized sampling and infinite-dimensional compressed sensing[J]. Foundations of Computational Mathematics, 2015, 16(5):1263-1323. BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001. STANKOVIC L, STANKOVIO S, and OROVIC I. Robust time-frequency analysis based on the L-estimation and compressive sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 499-502. CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 金艷, 李曙光, 姬紅兵. 基于柯西分布的跳頻信號參數(shù)最大似然估計方法[J]. 電子與信息學(xué)報, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029. JIN Yan, LI Shuguang, and JI Hongbing. Maximum- likelihood estimation for frequency-hopping parameters by cauchy distribution[J]. Journal of Electronics Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/ JEIT151029. ZHANG C M, YIN Z K, and XIAO M X. Redundant dictionary based signal over-complete representation and sparse decomposition[J]. Chinese Science Bulletin, 2006, 51(6): 628-633. FAN H, GUO Y, and FENG X. Blind parameter estimation of frequency hopping signals based on matching pursuit[C]. International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, 2008: 1-5. BULTAN A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1997, 47(3): 731-745. DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems and Computers, IEEE, 2008: 581-587. 范海寧, 郭英, 艾宇. 基于原子分解的跳頻信號盲檢測和參數(shù)盲估計算法[J]. 信號處理, 2010, 26(5): 695-702. FAN Haining, GUO Ying, and AI Yu. Blind detection and parameter estimation algorithm based on atomic decomposition[J]. Signal Processing, 2010, 26(5): 695-702. 金艷, 朱敏, 姬紅兵. Alpha 穩(wěn)定分布噪聲下基于柯西分布的相位鍵控信號碼速率最大似然估計[J]. 電子與信息學(xué)報, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180. JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180. -
計量
- 文章訪問數(shù): 1297
- HTML全文瀏覽量: 134
- PDF下載量: 248
- 被引次數(shù): 0