一種VideoSAR動目標陰影檢測方法
doi: 10.11999/JEIT161394
-
1.
(南京航空航天大學電子信息工程學院 南京 211106) ②(南京工程學院計算機工程學院 南京 211167)
國家自然科學基金(61671240),江蘇省自然科學基金青年基金(BK20150730),中央高?;究蒲袠I(yè)務(wù)費(NZ2016105),南京航空航天大學研究生創(chuàng)新基地(實驗室)開放基金資助項目(kfjj20170401)
Approach to Moving Targets Shadow Detection for VideoSAR
-
1.
(College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
The National Natural Science Foundation of China (61671240), The Natural Science Foundation of Jiangsu Province for Youths (BK20150730), The Fundamental Research Funds for the Central Universities (NZ2016105), The Foundation of Graduate Innovation Center in NUAA (kfjj20170401)
-
摘要: 在高幀率的視頻合成孔徑雷達(VideoSAR)成像模式獲得的圖像序列中,多普勒頻移使運動目標在實際位置留下陰影,且相鄰幀圖像具有很強相關(guān)性。該文針對上述現(xiàn)象提出一種VideoSAR圖像中動目標陰影檢測的方法。首先,對每幀圖像通過結(jié)合尺度不變特征變換(SIFT)和隨機抽樣一致性(RANSAC)算法實現(xiàn)配準并進行背景補償,再采用CattePM模型抑制相干斑噪聲。然后通過Tsallis灰度熵的最大化閾值分割方法自動分離目標和背景,獲得二值圖像。最后,對相鄰多幀圖像背景建模并差分,再結(jié)合三幀間差分法提取動目標陰影,結(jié)果標記至原幀圖像相應(yīng)位置。基于美國Sandia實驗室公布的VideoSAR成像片段,實現(xiàn)了多個移動車輛的檢測,驗證了所提算法的有效性。Abstract: In the image sequence obtained by the high frame rate Video Synthetic Aperture Radar (VideoSAR) mode, the Doppler shift results in some shadows of the moving targets in their actual position, and a strong correlation exists between adjacent frames. Based on the above rationale, this paper proposes an approach to detecting moving targets shadow in VideoSAR imagery. First, the Scale-Invariant Feature Transform (SIFT) with RANdom SAmple Consensus (RANSAC) registration algorithm is used to compensate for the change of background of each frame, and the CattePM model is employed to suppress the speckle noise effectively. Then, in order to separate the targets and the background and generate binary images automatically, a threshold segmentation algorithm, called maximizing the Tsallis entropy, is applied. Finally, shadow detection is accomplished by the background difference with three frame difference method, and the detection results are marked on the corresponding position in the original frame. Experimental results utilizing the VideoSAR imaging fragment published by Sandia National Laboratories show that multiple moving vehicles are detected effectively, hence the validity of the approach is demonstrated.
-
WELLS L, SORENSEN K, DOERRY A, et al. Developments in SAR and IFSAR systems and technologies at Sandia national laboratories[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, 2003, Vol. 2: 1085-1095. doi: 10.1109/AERO.2003.1235522. MILLER J, BISHOP E, and DOERRY A. An application of backprojection for video SAR image formation exploiting a subaperature circular shift register[C]. Proceedings of SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA, 2013: 874609. LIU B, ZHANG X P, TANG K, et al. Spaceborne video-SAR moving target surveillance system[C]. 2016 IEEE International Geoscience and Remote Sensing Sympsium, Beijing, China, 2016: 2348-2351. doi: 10.1109/IGARSS.2016. 7729606. ZHAO S, CHEN J, YANG W, et al. Image formation method for spaceborne video SAR[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Marina Bay Sands, Singapore, 2015: 148-151. doi: 10.1109/APSAR.2015. 7306176. DAMINI A, MANTLE V, and DAVIDSON G. A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence[C]. 2013 IEEE Radar Conference, Ottawa, Ontario, Canada, 2013: 1-5. doi: 10.1109/RADAR.2013.6586152. HAWLEY R W and GARBER W L. Aperture weighting technique for video synthetic aperture radar[C]. Proceedings of SPIE Defense, Security, and Sensing, Orlando, Florida, USA, 2011: 805107. RAYNAL A M, BICKEL D L, and DOERRY A W. Stationary and moving target shadow characteristics in synthetic aperture radar[C]. Proceedings of SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA, 2014: 90771B. JAHANGIR M. Moving target detection for synthetic aperture radar via shadow detection[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1-5. doi: 10.1049/cp:20070659. 史洪印, 侯志濤, 郭秀花, 等. 基于陰影檢測的單幅高分辨SAR 圖像動目標檢測方法[J]. 信號處理, 2012, 28(12): 1706-1713. doi: 10.3969/j.issn.1003-0530.2012.12.011. SHI Hongyin, HOU Zhitao, GUO Xiuhua, et al. Moving targets indication method in single high resolution SAR imagery based on shadow decetion[J]. Journal of Signal Processing, 2012, 28(12): 1706-1713. doi: 10.3969/j.issn.1003- 0530.2012.12.011. 史洪印, 張諾. 基于稀疏表示和道路輔助的單幅SAR圖像運動目標檢測方法[J]. 電子學報, 2015, 43(3): 431-439. doi: 10.3969/j.issn.0372-2112.2015.03.003. SHI Hongyin and ZHANG Nuo. Moving targets indication method in single SAR imagery based on sparse representation and road information[J]. Acta Electronica Sinica, 2015, 43(3): 431-439. doi: 10.3969/j.issn.0372-2112.2015.03.003. 張小強, 熊博蒞, 匡綱要. 一種基于變化檢測技術(shù)的 SAR 圖像艦船目標鑒別方法[J]. 電子與信息學報, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143. ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143. LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 申浩, 李書曉, 申意萍, 等. 航拍視頻幀間快速配準算法[J]. 航空學報, 2013, 36(6): 1405-1413. doi: 10.7527/S1000-6893. 2013.0239. SHEN Hao, LI Shuxiao, SHEN Yiping, et al. Fast interframe registration method in aerial videos[J]. Acta Aeronautica et Astronautica Sinica, 2013, 36(6): 1405-1413. doi: 10.7527/ S1000-6893.2013.0239. CATTE F, LIONS P, MOREL J, et al. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(3): 182-193. ALBUQUERQUE M P, ESQUEF I A, and GESUALDI MELLO A R. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059-1065. doi: 10.1016/j.patrec.2004.03.003. TSAI D M and LAI S C. Independent component analysis- based background subtraction for indoor surveillance[J]. IEEE Transactions on Image Processing, 2009, 18(1): 158-167. doi: 10.1109/TIP.2008.2007558. -
計量
- 文章訪問數(shù): 2028
- HTML全文瀏覽量: 283
- PDF下載量: 380
- 被引次數(shù): 0