無線傳感器網(wǎng)絡中面向壓縮感知定位的動態(tài)字典算法
doi: 10.11999/JEIT161379
基金項目:
國家自然科學基金(61571463, 61371124, 61472445)
Dynamic Dictionary Algorithm for CS-based Localization in Wireless Sensor Networks
Funds:
The National Natural Science Foundation of China (61571463, 61371124, 61472445)
-
摘要: 傳統(tǒng)的壓縮感知定位方法均假設目標準確落在某一預設的固定網(wǎng)格上。當目標偏離該網(wǎng)格,所采用的字典與真實稀疏表示字典之間存在失配,導致這些方法的定位性能大大降低。針對該問題,該文提出一種面向壓縮感知定位的動態(tài)字典算法。該算法將真實稀疏表示字典建模為一個以網(wǎng)格為參數(shù)的動態(tài)字典,從而將定位問題轉化為聯(lián)合稀疏重構和參數(shù)估計問題。利用一階泰勒展開對真實稀疏表示字典進行近似,將非凸的參數(shù)優(yōu)化問題松弛為凸優(yōu)化問題。仿真結果表明,相比于傳統(tǒng)的靜態(tài)字典算法,該文所提出的動態(tài)字典算法具有更好的性能。
-
關鍵詞:
- 無線傳感器網(wǎng)絡 /
- 壓縮感知 /
- 動態(tài)字典 /
- 泰勒近似
Abstract: Traditional Compressive Sensing (CS)-based localization methods assume all targets fall on a pre- sampled and fixed grid. There will be mismatch between the adopted and actual sparsifying dictionaries when some targets fall off the grid, leading these methods to perform poorly. To address this problem, an efficient dynamic dictionary algorithm is developed for CS-based localization. To achieve this, the actual sparsifying dictionary is modeled as a parameterized dictionary with the grid viewed as adjustable parameters. By doing so, the localization problem is formulated as a joint sparse reconstruction and parameter estimation problem. Additionally, the non-convex parameter optimization problem is transformed into a tractable convex problem by approximating the actual sparsifying dictionary with its first Taylor expansion. Extensive simulation results show that the proposed dynamic dictionary algorithm provides better performance than the state-of-the-art fixed dictionary algorithms. -
LIU Yunhao, YANG Zheng, WANG Xiaoping, et al. Location, localization, and localizability[J]. Journal of Computer Science and Technology, 2010, 25(2): 274-297. doi: 10.1007/ s11390-010-9324-2 AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: A survey[J]. Computer Networks, 2002, 38(4): 393-422. doi: 10.1016/S1389-1286(01)00302-4. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582. CANDE E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006: 1433-1452. CEVHER V, DUARTE M, and BARANIUK R G. Distributed target localization via spatial sparsity[C]. Proceedings of the European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, 2008: 25-29. FENG C, VALAEE S, and TAN Z. Multiple target localization using compressive sensing[C]. IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, HI, 2009: 1-6. doi: 10.1109/GLOCOM.2009.5425808. ZHANG B, CHEN X, ZHANG N, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]. IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, 2011: 2255-2263. doi: 10.1109/INFCOM.2011.5935041. 何風行, 余志軍, 劉海濤. 基于壓縮感知的無線傳感器網(wǎng)絡多目標定位算法[J]. 電子與信息學報, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405. HE Fenghang, YU Zhijun, and LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146. 2011.00405. 趙春暉, 許云龍, 黃輝. 基于LU分解的稀疏目標定位算法[J]. 電子與信息學報, 2013, 35(9): 2234-2239. doi: 10.3724/SP.J. 1146.2012.01527. ZHAO Chunhui, XU Yunlong, and HUANG Hui. Localization algorithm of sparse targets based on LU- decomposition[J]. Journal of Electronics Information Technology, 2013, 35(9): 2234-2239. doi: 10.3724/SP.J.1146. 2012.01527. 李一兵, 黃輝, 葉方, 等. 基于奇異值分解的壓縮感知定位算法[J]. 中南大學學報(自然科學版), 2014, 45(5): 1516-1521. LI Yibing, HUANG Hui, YE Fang, et al. Target localization via compressed sensing based on SVD[J]. Journal of Central South University (Natural Science), 2014, 45(5): 1516-1521. 王婷婷, 柯煒, 孫超. 自適應環(huán)境變化的RSS室內(nèi)定位方法[J]. 通信學報, 2014, 35(10): 210-217. doi: 10.3969/j.issn.1000- 436x.2014.10.024. WANG Tingting, KE Wei, and SUN Chao. Environmental- adaptive RSS-based indoor localization[J]. Journal on Communications, 2014, 35(10): 210-217. doi: 10.3969/j.issn. 1000-436x.2014.10.024. LIU L, CUI T, and L W. A range-free multiple target localization algorithm using compressive sensing theory in wireless sensor networks[C]. IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Philadelphia, Pennsylvania, USA, 2014: 690-695. doi: 10.1109/MASS.2014.56. 呂偉杰, 崔婷婷, 劉超, 等. 一種新的基于壓縮感知的WSN多目標定位方法[J]. 系統(tǒng)仿真技術, 2015, 11(1): 6-13. doi: 10.3969/j.issn.1673-1964.2015.01.002. L Weijie, CUI Tingting, LIU Chao, et al. A new multiple target localization based on compressed sensing theory in wsn[J]. System Simulation Technology, 2015, 11(1): 6-13. doi: 10.3969/j.issn.1673-1964.2015.01.002. 孫保明, 郭艷, 李寧, 等. 無線傳感器網(wǎng)絡中基于壓縮感知的動態(tài)目標定位算法[J]. 電子與信息學報, 2016, 38(8): 1858-1864. doi: 10.11999/JEIT151203. SUN Baoming, GUO Yan, LI Ning, et al. Mobile target localization algorithm using compressive sensing in wireless sensor networks[J]. Journal of Electronics Information Technology, 2016, 38(8): 1858-1864. doi: 10.11999/JEIT 151203. YANG Z and XIE L. A weighted atomic norm approach to spectral super-resolution with probabilistic priors[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 4598-4602. doi: 10.1109/ICASSP.2016.7472548. MISHRA K V, CHO M, KRUGER A, et al. Spectral super-resolution with prior knowledge[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5342-5357. doi: 10.1109/ TSP.2015.2452223. 陳偉, 顏俊, 朱衛(wèi)平. 利用壓縮感知與多邊測量技術的無線傳感器網(wǎng)絡定位算法[J]. 信號處理, 2014, 30(6): 728-735. doi: 10.3969/j.issn.1003-0530.2014.06.016. CHEN Wei, YAN Jun, and ZHU Weiping. Wireless sensor network location algorithm using compressive sensing and multilateral measurements[J]. Journal of Signal Processing, 2014, 30(6): 728-735. doi: 10.3969/j.issn.1003-0530.2014.06. 016. -
計量
- 文章訪問數(shù): 1256
- HTML全文瀏覽量: 193
- PDF下載量: 256
- 被引次數(shù): 0