腦機(jī)接口技術(shù)中安全高效的屬性基訪問控制
doi: 10.11999/JEIT161362
國家自然科學(xué)基金(61572263, 61272084),江蘇省高校自然科學(xué)研究重大項(xiàng)目(11KJA520002),高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20113223110003),中國博士后科學(xué)基金(2015M581794),江蘇省博士后科研資助計(jì)劃(1501023C),南京郵電大學(xué)校級(jí)科研基金(NY214127)
Secure and Efficient Attribute Based Access Control for Brain-computer Interface
The National Natural Science Foundation of China (61572263, 61272084), The Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China (11KJA520002), The Specialized Research Fund for the Doctoral Program of Higher Education (20113223110003), China Postdoctoral Science Foundation (2015M581794), Jiangsu Province Planned Projects for Postdoctoral Research Funds (1501023C), NUPTSF (NY214127)
-
摘要: 隨著腦機(jī)接口技術(shù)(Brain-Computer Interface, BCI)在新興醫(yī)療健康監(jiān)測(cè)領(lǐng)域的廣泛應(yīng)用,其受到的安全威脅越來越多,導(dǎo)致其隱私保護(hù)問題受到了關(guān)注。該文針對(duì)BCI應(yīng)用中的隱私保護(hù)問題提出一種通信模型,并為其設(shè)計(jì)了一種基于密文策略的屬性基(Ciphertext-Policy Attribute Based Encryption, CP-ABE)訪問控制方案,利用代理重加密技術(shù)實(shí)現(xiàn)細(xì)粒度的屬性撤銷。經(jīng)分析表明,方案有效地解決了BCI模型中敏感數(shù)據(jù)的隱私保護(hù)問題,并且在能量損耗及通信計(jì)算開銷等性能評(píng)估中表現(xiàn)優(yōu)異。
-
關(guān)鍵詞:
- 腦機(jī)接口技術(shù) /
- 隱私保護(hù) /
- 訪問控制方案 /
- 屬性撤銷 /
- 代理重加密
Abstract: Brain-Computer Interface (BCI) are expected to play a major role in field of medical-health monitoring in near future. Unfortunately, an increasing number of attacks to BCI applications underline the existence of security and privacy related issues, which gains tremendous attention amongst researchers. In this paper, a communication architecture is proposed for BCI applications, and an access control scheme is designed by employing Ciphertext-Policy Attribute Based Encryption (CP-ABE). The proposed scheme supports fully fine-grained attribute revocation by proxy re-encryption. The proposed scheme can efficiently and feasibly reduce the challenges of privacy preservation, and it works excellent in energy consumption and communication/ computation overhead. -
WOLPAW J, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2002, 113(6): 767-791. doi: 10.1016/S1388-2457(02)00057-3. WOLPAW J, BIRBAUMER N, and HEETDERKS W. Brain-computer interface technology: A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. doi: 10.1109/ TRE.2000.847807. Abdulkader S N, ATIA A, and MOSTAFA M S M. Brain computer interfacing: Applications and challenges[J]. Egyptian Informatics Journal, 2015, 16(2): 213-230. doi: 10.1016/j.eij.2015.06.002. BLONDET M V R, BADARINATH A, KHANNA C, et al. A wearable real-time BCI system based on mobile cloud computing[C]. International IEEE/EMBS Conference on Neural Engineering, San Diego, CA, USA, 2013: 739-742. doi: 10.1109/NER.2013.6696040. ELSAWY A S and ELDAWLATLY S. P300-based applications for interacting with smart mobile devices[C]. International IEEE/EMBS Conference on Neural Engineering. IEEE, Montpellier, France, 2015: 166-169. doi: 10.1109/NER.2015.7146586. HONDA K and KUDOH S N. Air brain: The easy telemetric system with smartphone for EEG signal and human behavior[C]. International Conference on Body Area Networks, Brussels, Belgium, 2013: 343-346. doi: 10.4108/ icst.bodynets.2013. 253918. LI Q Q, DING D, and CONTI M. Brain-computer interface applications: Security and privacy challenges[C]. IEEE Communications and Network Security, Florence, Italy, 2015: 663-666. doi: 10.1109/CNS.2015.7346884. MARTINOVIC I, DAVIES D, FRANK M, et al. On the feasibility of side-channel attacks with brain-computer interfaces[C]. Usenix Conference on Security Symposium, Berkeley CA USA, 2012: 34. LUBER B, FISHER C, APPELBAUM P S, et al. Non- invasive brain stimulation in the detection of deception: scientific challenges and ethical consequences[J]. Behavioral Sciences the Law, 2009, 27(2): 191-208. doi: 10.1002/bsl. 860. U.S. Centers for Medicare Medicaid Services. Hippa basics for providers: privacy, security, and breach notification rules[OL]. https://www.cms.gov/Outreach-and-Education/ Medicare-Learning-Network-MLN/MLNProducts/Downloads/HIPAAPrivacyandSecurityTextOnly.pdf. 2016. U.S. Federal Trade Commission. Federal trade commission act[OL]. https://www.ftc.gov/enforcement/statutes/federal- trade-commission-act.Apr.12, 2015. CHIZECK H J and BONACI T. Brain-computer interface anonymizer[OL]. https://docs.google.com/viewer?url= patentimages.storage.googleapis.com/pdfs/US20140228701.pdf. Aug.14, 2014. BONACI T, CALO R, and CHIZECK H. App stores for the brain: privacy and security in brain-computer interfaces[J]. Technology Society Magazine IEEE, 2015, 34(2): 32-39. doi: 10.1109/MTS.2015.2425551. VENKATASUBRAMANIAN K K, BANERIEE A, and GUPTA S K S. EKG-based key agreement in body sensor networks[C]. INFOCOM Workshops. IEEE, Phoenix, AZ, USA, 2008: 1-6. doi: 10.1109/INFOCOM.2008.4544608. CHERUKURI S, VENKATASUBRAMANIAN K K, and GUPTA S K S. BioSec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body[C]. International Conference on Parallel Processing Workshops, Kaohsiung, 2003: 432-439. doi: 10.1109/ICPPW.2003.1240399. TAN C C, WANG H, ZHONG S, et al. Body sensor network security: An identity-based cryptography approach[C]. ACM Conference on Wireless Network Security, Alexandria, VA, USA, 2008: 148-153. doi: 10.1145/1352533.1352557. MALEK B and MIRI A. Combining attribute-based and access systems[C]. 2009 International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 2009, 3: 305-312. doi: 10.1109/CSE.2009.157. HAN R F, WANG H X, XIAO Q, et al. A united access control model for systems in collaborative commerce[J]. Journal of Networks, 2009, 4(4): 279-289. doi: 10.4304/jnw. 4.4.279-289. WAN Z, LIU J, and DENG R H. HASBE: A hierarchical attribute-based solution for flexible and scalable access control in cloud computing[J]. IEEE Transactions on Information Forensics Security, 2012, 7(2): 743-754. doi: 10.1109/TIFS.2011.2172209. GOYAL V, PANDEY O, SAHAI A, et al. Attribute-based encryption for fine-grained access control of encrypted data [C]. ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 2006: 89-98. doi: 10.1145/1180405.1180418. 馮登國, 陳成. 屬性密碼學(xué)研究[J]. 密碼學(xué)報(bào), 2014, 1(1): 1-12. doi: 10.13868/j.cnki.jcr.000001. FENG Dengguo and CHEN Cheng. Research on attribute- based cryptography[J]. Journal of Cryptologic Research, 2014, 1(1): 1-12. doi: 10.13868/j.cnki.jcr.000001. YU S, WANG C, REN K, et al. Attribute based data sharing with attribute revocation[C]. ACM Symposium on Information, Computer and Communications Security, ASIACCS 2010, Beijing, China, 2010: 261-270. doi: 10.1145/ 1755688.1755720. NARUSE T, MOHRI M, and SHIRAISHI Y. Provably secure attribute-based encryption with attribute revocation and grant function using proxy re-encryption and attribute key for updating[J]. Human-centric Computing and Information Sciences, 2015, 5(1): 1-13. doi: 10.1186/s13673-015-0027-0. WANDER A S, GURA N, EBERLE H, et al. Energy analysis of public-key cryptography for wireless sensor networks[C]. Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, Kauai Island, HI, USA, 2005: 324-331. doi: 10.1109/PERCOM.2005.18. REN Kui, ZENG Kai, LOU Wenjing, et al. On broadcast authentication in wireless sensor networks[C]. International Conference on Wireless Algorithms, Systems, and Applications, Xian, China, 2006: 502-514. doi: 10.1007/ 11814856_48. -
計(jì)量
- 文章訪問數(shù): 1190
- HTML全文瀏覽量: 121
- PDF下載量: 233
- 被引次數(shù): 0