基于核空間的加權(quán)鄰域約束直覺模糊聚類算法
doi: 10.11999/JEIT161317
-
1.
(中國藥科大學(xué)理學(xué)院 南京 211198) ②(閩江學(xué)院計算機(jī)科學(xué)系 福州 350108) ③(福建省信息處理與智能控制重點(diǎn)實驗室 福州 350108)
國家自然科學(xué)基金青年基金(61501522),福州市科技計劃項目(2016-S-116),福建省新世紀(jì)優(yōu)秀人才支持計劃(NCETFJ),福建省高校青年自然基金重點(diǎn)項目(JZ160467),福建省引導(dǎo)性項目(2017H0030)
Kernel-based Algorithm with Weighted Spatial Information Intuitionistic Fuzzy C-means
-
1.
(School of Science, China Pharmaceutical University, Nanjing 211198, China)
The National Natural Science Foundation of China (61501522), Fuzhou Science and Technology Planning Project (2016-S-116), The Program for New Century Excellent Talents in Fujian Province University (NCETFJ), The Key Project of College Youth Natural Science Foundation of Fujian Province (JZ160467), The Fujian Provincial Leading Project (2017H0030)
-
摘要: 該文針對直覺模糊聚類算法不考慮空間鄰域信息的缺點(diǎn),提出一種基于核空間和加權(quán)鄰域約束的直覺模糊C均值聚類算法。該算法首先在直覺模糊C均值(Intuitionistic Fuzzy C-Means, IFCM)算法的基礎(chǔ)上加入空間鄰域約束關(guān)系,且賦予鄰域內(nèi)每個點(diǎn)不同的權(quán)重;接著采用核誘導(dǎo)函數(shù)代替歐氏距離計算各點(diǎn)到聚類中心的距離;然后創(chuàng)建包含鄰域信息的新的目標(biāo)函數(shù),最優(yōu)化該目標(biāo)函數(shù)得到新的隸屬度及聚類中心的迭代表達(dá)式。利用所提出的新算法與同類聚類算法及基于顯著過渡區(qū)域的二值化算法進(jìn)行圖像分割,并對結(jié)果進(jìn)行定量分析后可知,所提出的算法最高能夠得到0.9776的F度量值。實驗結(jié)果表明新算法性能穩(wěn)定并且具有較高的分割精度。Abstract: To overcome the shortcoming of Intuitionistic Fuzzy C-Means (IFCM) that it does not take into account the spatial information, a new Kernel-based algorithm with Weighted Spatial Information (KWSI_IFCM) is proposed. Firstly, the constraint of weighted spatial neighborhood information is added. Secondly, instead of Euclidean distance, kernel-induced function is used to measure the distance between pixels and cluster centers. Thirdly, a new clustering objective function is created and then the iterative expressions of new membership and clustering centers are obtained by optimizing the new function. The quantitative analysis of image segmentation results using the new algorithm, other similar methods and a binarization method based on salient transition region shows that the new algorithm can get the F-measure value with 0.9776. The experimental results demonstrate that the proposed algorithm can obtain higher stability and segmentation accuracy than similar fuzzy C-mean algorithm.
-
王新寧, 林相波, 袁珍. 基于FCM聚類算法的MRI腦組織圖像分割方法比較研究[J]. 北京生物醫(yī)學(xué)工程, 2015, 34(3): 221-228. doi: 10.3969/j.issn.1002-3208.2015.03.01. BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J[. Computers Geosciences, 1984, 10(2) : 191-203. WANG Xinning, LIN Xiangbo, and YUAN Zhen. A comparative study for MRI brain image segmentation based on FCM clustering algorithm[J]. Beijing Biomedical Engineering, 2015, 34(3): 221-228. doi: 10.3969/j.issn.1002- 3208.2015.03.01. 孫權(quán)森, 紀(jì)則軒. 基于模糊聚類的腦磁共振圖像分割算法綜述[J]. 數(shù)據(jù)采集與處理, 2016, 31(1): 28-42. doi: 10.16337/ j.1004-9037.2016.01.003. SUN Quansen and JI Zexuan. Fuzzy clustering for brain MR image segmentation[J]. Journal of Data Acquisition Processing, 2016, 31(1): 28-42. doi: 10.16337/j.1004-9037. 2016.01.003. AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199. doi: 10.1109/42. 996338. CHEN S and ZHANG D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(4): 1907-1916. doi: 10.1109/TSMCB.2004.831165. SZILAGYI L, BENYO Z, SZILGYI S M, et al. MR brain image segmentation using an enhanced fuzzy c-means algorithm[C]. Proceedings of the 25th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Cancn, Mexico, 2003, 1: 724-726. doi: 10.1109/ IEMBS.2003.1279866. CAI W, CHEN S, and ZHANG D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838. doi: 10.1016/j.patcog.2006.07.011. KRINIDIS S and CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337. doi: 10.1109/TIP.2010.2040763. 李艷靈, 沈軼. 基于空間鄰域信息的FCM圖像分割算法[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版), 2009, 37(6): 56-59. doi: 10.13245/j.hust.2009.06.023. LI Yanling and SHEN Yi. Fuzzy C-means algorithm based on the spatial information for image segmentation[J]. Journal Huzhong University of Science Technology(Natural Science Edition), 2009, 37(6): 56-59. doi: 10.13245/j.hust.2009.06. 023. 申鉉京, 何月, 張博, 等. 基于空間信息及隸屬度約束的FCM圖像分割算法[J]. 北京工業(yè)大學(xué)學(xué)報, 2012, 38(7): 1073-1078. SHEN Xuanjing, HE Yue, ZHANG Bo, et al. FCM with spatial information and membership constrains for image segmention[J]. Journal of Beijing University of Technology, 2012, 38(7): 1073-1078. 夏菁, 張彩明, 張小峰, 等. 結(jié)合邊緣局部信息的FCM抗噪圖像分割算法[J]. 計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報, 2014, 26(12): 2203-2213. XIA Jing, ZHANG Caiming, ZHANG Xiaofeng, et al. A novel robust FCM algorithm combining local information on edge for image segmentation[J]. Journal of Computer-Aided Design Computer Graphics, 2014, 26(12): 2203-2213. ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96. doi: 10.1016/S0165-0114(86) 80034-3. ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. CHAIRA T. A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images[J]. Applied Soft Computing, 2011, 11(2): 1711-1717. doi: 10.1016/j.asoc. 2010.05.005. CHAIRA T. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set[J]. Applied Soft Computing, 2012, 12(4): 1259-1266. doi: 10. 1016/j.asoc.2011.12.011. HUANG C W, LIN K P, WU M C, et al. Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image[J]. Soft Computing, 2015, 19(2): 459-470. doi: 10.1007/s00500-014-1264-2. 王昭, 范九倫, 婁昊, 等. 一種融入局部信息的直覺模糊C-均值聚類圖像分割算法[J]. 計算機(jī)應(yīng)用研究, 2014, 31(9): 2864-2866. doi: 10.3969/j.issn.1001-3695.2014.09.073. WANG Zhao, FAN Jiulun, LOU Hao, et al. Intuitionistic fuzzy C-means clustering algorithm incorporating local information for image segmentation[J]. Application Research of Computers, 2014, 31(9): 2864-2866. doi: 10.3969/j.issn. 1001-3695.2014.09.073. 蘭蓉, 馬姣婷. 基于直覺模糊C-均值聚類算法的圖像分割[J]. 西安郵電大學(xué)學(xué)報, 2016, 21(3): 1-4. doi: 10.13682/j.issn. 2095-6533.2016.04.010. LAN Rong and MA Jiaoting. Image segmentation based on intuitionstic fuzzy C-means clustering algorithm[J]. Journal of Xi,an University of Posts and Telecommunications, 2016, 21(3): 1-4. doi: 10.13682/j.issn.2095-6533.2016.04.010. XU Z, CHEN J, and WU J. Clustering algorithm for intuitionistic fuzzy sets[J]. Information Sciences, 2008, 178(19): 3775-3790. doi: 10.1016/j.ins.2008.06.008. LI Z, LIU G, ZHANG D, et al. Robust single-object image segmentation based on salient transition region[J]. Pattern Recognition, 2016, 52: 317-331. doi: org/10.1016/j.patcog. 2015.10.009. GATOS B, NTIROGIANNIS K, and PRATIKAKIS I. ICDAR 2009 document image binarization contest (DIBCO 2009)[C]. 10th International Conference on Document Analysis and Recognition, Catalonia, Spain, 2009, 9: 1375-1382. doi: 10.1109/ICDAR.2009.246. -
計量
- 文章訪問數(shù): 1475
- HTML全文瀏覽量: 176
- PDF下載量: 339
- 被引次數(shù): 0