一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于收視行為的互聯(lián)網(wǎng)電視節(jié)目流行度預(yù)測(cè)模型

朱琛剛 程光

朱琛剛, 程光. 基于收視行為的互聯(lián)網(wǎng)電視節(jié)目流行度預(yù)測(cè)模型[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
引用本文: 朱琛剛, 程光. 基于收視行為的互聯(lián)網(wǎng)電視節(jié)目流行度預(yù)測(cè)模型[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310
Citation: ZHU Chengang, CHENG Guang. Program Popularity Prediction Model of Internet TV Based on Viewing Behavior[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2504-2512. doi: 10.11999/JEIT161310

基于收視行為的互聯(lián)網(wǎng)電視節(jié)目流行度預(yù)測(cè)模型

doi: 10.11999/JEIT161310
基金項(xiàng)目: 

國(guó)家計(jì)劃項(xiàng)目(863)(2015AA015603),江蘇省未來(lái)網(wǎng)絡(luò)創(chuàng)新研究院未來(lái)網(wǎng)絡(luò)前瞻性研究項(xiàng)目(BY2013095-5-03),江蘇省六大人才高峰高層次人才項(xiàng)目(2011-DZ024)

Program Popularity Prediction Model of Internet TV Based on Viewing Behavior

Funds: 

The National 863 Program of China (2015AA 015603), The Prospective Research Program on Future Networks of Jiangsu Province (BY2013095-5-03), The Six Industries Talent Peaks Plan of Jiangsu Province (2011-DZ024)

  • 摘要: 準(zhǔn)確預(yù)測(cè)節(jié)目流行度是互聯(lián)網(wǎng)電視節(jié)目系統(tǒng)設(shè)計(jì)與優(yōu)化所要解決的關(guān)鍵問(wèn)題之一。針對(duì)現(xiàn)有預(yù)測(cè)方法存在模型訓(xùn)練時(shí)間長(zhǎng)、樣本數(shù)量多、且對(duì)突發(fā)熱點(diǎn)節(jié)目流行度預(yù)測(cè)效果差等問(wèn)題,該文測(cè)量了某互聯(lián)網(wǎng)電視平臺(tái)280萬(wàn)用戶(hù)的60億條收視行為數(shù)據(jù),采用行為動(dòng)力學(xué)分類(lèi)方法將節(jié)目流行度演化過(guò)程分為內(nèi)源臨界、內(nèi)源亞臨界、外源臨界和外源亞臨界4種類(lèi)型,運(yùn)用雙種群粒子優(yōu)化的最小二乘支持向量機(jī)對(duì)每種類(lèi)型分別構(gòu)建了一種互聯(lián)網(wǎng)電視節(jié)目流行度預(yù)測(cè)模型BD3P,并將BD3P模型應(yīng)用于實(shí)際數(shù)據(jù)測(cè)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有其他方法相比,BD3P模型預(yù)測(cè)精度可提升17%以上,并能有效縮短預(yù)測(cè)周期。
  • 朱軼, 糜正琨, 王文鼐. 一種基于內(nèi)容流行度的內(nèi)容中心網(wǎng)絡(luò)緩存概率置換策略[J]. 電子與信息學(xué)報(bào), 2013, 35(6): 1305-1310. doi: 10.3724/SP.J.1146.2012.01143.
    ZHU Yi, MI Zhengkun, and WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics Information Technology, 2013, 35(6): 1305-1310. doi: 10.3724 /SP.J.1146.2012.01143.
    芮蘭蘭, 彭昊, 黃豪球, 等. 基于內(nèi)容流行度和節(jié)點(diǎn)中心度匹配的信息中心網(wǎng)絡(luò)緩存策略[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    RUI Lanlan, PENG Hao, HUANG Haoqiu, et al. Popularity and centrality based selective caching scheme for information- centric networks[J]. Journal of Electronics Information Technology, 2016, 38(2): 325-331. doi: 10.11999/JEIT150626.
    GMEZ V, KALTENBRUNNER A, and LPEZ V. Statistical analysis of the social network and discussion threads in slashdot[C]. ACM International Conference on World Wide Web, Beijing, China, 2008: 645-654. doi: 10.1145 /1367497.1367585.
    SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
    CASTILLO C, ELHADDAD M, PFEFFER J, et al. Characterizing the life cycle of online news stories using social media reactions[C]. ACM International Conference on Computer Supported Cooperative Work Social Computing, Baltimore, MD, USA, 2014: 211-223. doi: 10.1145/2531602. 2531623.
    PINTO H, ALMEIDA J M, and GONALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. ACM International Conference on Web Search and Data Mining, Rome, Italy, 2013: 365-374. doi: 10.1145/ 2433396.2433443.
    GAO S, MA J, and CHEN Z. Modeling and predicting retweeting dynamics on microblogging platforms[C]. ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 107-116. doi: 10.1145/2684822. 2685303.
    CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
    WU B, MEI T, CHENG W H, et al. Unfolding temporal dynamics: Predicting social media popularity using multi-scale temporal decomposition[C]. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 2016: 32-38. doi: 10.13140/RG.2.2.27504.66565.
    WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[C]. IEEE International Symposium on Quality of Service, Portland, OR, USA, 2015: 141-146. doi: 10.1109/IWQoS.2015.7404724.
    FONTANINI G, BERTINI M, and DEL BIMBO A. Web video popularity prediction using sentiment and content visual features[C]. ACM International Conference on Multimedia Retrieval, New York, NY, USA, 2016: 289-292. doi: 10.1145/2911996.2912053.
    ZAMAN T, FOX E B, and BRADLOW E T. A Bayesian approach for predicting the popularity of tweets[J]. The Annals of Applied Statistics, 2014, 8(3): 1583-1611. doi: 10.1214/14-AOAS741.
    WANG J, ZHANG Z, and ZHANG W. Support vector machine based on double-population particle swarm optimization[J]. Journal of Convergence Information Technology, 2013, 8(8): 33-43. doi: 10.4156/jcit.vol8.issue8. 106.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1447
  • HTML全文瀏覽量:  169
  • PDF下載量:  252
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-10-19

目錄

    /

    返回文章
    返回