一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于帶匯點(diǎn)Laplace擴(kuò)散模型的顯著目標(biāo)檢測(cè)

王寶艷 張鐵 王新剛

王寶艷, 張鐵, 王新剛. 基于帶匯點(diǎn)Laplace擴(kuò)散模型的顯著目標(biāo)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
引用本文: 王寶艷, 張鐵, 王新剛. 基于帶匯點(diǎn)Laplace擴(kuò)散模型的顯著目標(biāo)檢測(cè)[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
WANG Baoyan, ZHANG Tie, WANG Xingang. Salient Object Detection Based on Laplace Diffusion Models with Sink Points[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296
Citation: WANG Baoyan, ZHANG Tie, WANG Xingang. Salient Object Detection Based on Laplace Diffusion Models with Sink Points[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1934-1941. doi: 10.11999/JEIT161296

基于帶匯點(diǎn)Laplace擴(kuò)散模型的顯著目標(biāo)檢測(cè)

doi: 10.11999/JEIT161296
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(51475086),遼寧省自然科學(xué)基金(2014020026)

Salient Object Detection Based on Laplace Diffusion Models with Sink Points

Funds: 

The National Natural Science Foundation of China (51475086), The Natural Science Foundation of Liaoning Province (2014020026)

  • 摘要: 該文基于Laplace相似度量的構(gòu)造方法,針對(duì)兩階段顯著目標(biāo)檢測(cè)中顯著種子的不同類型(稀疏或稠密),提出了相應(yīng)的顯著性擴(kuò)散模型,從而實(shí)現(xiàn)了基于擴(kuò)散的兩階段互補(bǔ)的顯著目標(biāo)檢測(cè)。尤其是第2階段擴(kuò)散模型中匯點(diǎn)的融入,一方面更好地抑制了顯著性圖中的背景,同時(shí)對(duì)于控制因子的取值更加穩(wěn)健。實(shí)驗(yàn)結(jié)果表明,當(dāng)顯著種子確定時(shí),不同的擴(kuò)散模型會(huì)導(dǎo)致顯著性擴(kuò)散程度的差異?;趲R點(diǎn)Laplace的兩階段互補(bǔ)的擴(kuò)散模型較其他擴(kuò)散模型更有效、更穩(wěn)健。同時(shí),從多項(xiàng)評(píng)價(jià)指標(biāo)分析,該算法與目前流行的5種顯著目標(biāo)檢測(cè)算法相比,具有較大優(yōu)勢(shì)。這表明此種用于圖像檢索或分類的Laplace相似度量的構(gòu)造方法在顯著目標(biāo)檢測(cè)中也是適用的。
  • SHEN Hao, LI Shuxiao, ZHU Chengfei, et al. Moving object detection in aerial video based on spatiotemporal saliency[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1211-1217. doi: 10.1016/j.cja.2013.07.038.
    WANG Tiantian, XIU Chunbo, and CHENG Yi. Vehicle recognition based on saliency detection and color histogram [C]. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015: 2532-2535. doi: 10.1109/CCDC.2015.7162347.
    GUO Chenlei and ZHANG Liming. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1): 185-198. doi: 10.1109/TIP. 2009.2030969.
    ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1304-1318. doi: 10.1109/TIP.2004.834657.
    QIN Chanchan, ZHANG Guoping, ZHOU Yicong, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4): 378-391. doi: 10.1016/j.neucom.2013.09.021.
    LI Ang, SHE Xiaochun, and SUN Qizhi. Color image quality assessment combining saliency and FSIM[C]. Fifth International Conference on Digital Image Processing, Beijing, China, 2013: 88780I-1-88780I-5. doi: 10.1117/12. 2030719.
    LI Liang, JIANG Shuqiang, ZHA Zhengjun, et al. Partial- duplicate image retrieval via saliency-guided visual matching [J]. IEEE Multimedia, 2013, 20(3): 13-23. doi: 10.1109/ MMUL.2013.15.
    NA I S, LE H, KIM S H, et al. Extraction of salient objects based on image clustering and saliency[J]. Pattern Analysis and Application, 2015, 18(3): 667-675. doi: 10.1007/s10044- 015-0459-1.
    HAN Jie, GUO Baolong, and SUN Wei. Target tracking method in aerial video based on saliency fusion[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shanghai, China, 2015: 723-727. doi: 10.2991/meic-15.2015.165.
    BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1007/ 978-3-642-33709-3_30.
    WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]. 12th European Conference on Computer Vision, Florence, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3.
    FU Keren, GU I Y H, GONG Chen, et al. Robust manifold- preserving diffusion-based saliency detection by adaptive weight construction[J]. Neurocomputing, 2015, 175: 336-347. doi: 10.1016/j.neucom.2015.10.066.
    SHEN Xiaohui and WU Ying. A unified approach to salient object detection via low rank matrix recovery[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 853-860. doi: 10.1109/CVPR.2012. 6247758.
    LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. IEEE Conference on Computer Vision, Sydney, Australia, 2013: 2976-2983. doi: 10.1109/ICCV.2013.370.
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Oregon, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013. 407.
    JIANG Bowen, ZHANG Lihe, LU Huchuan, et al. Saliency detection via absorbing markov chain[C]. IEEE Conference on Computer Vision, Oregon, USA, 2013: 1665-1672. doi: 10.1109/ICCV.2013.209.
    ZHOU Li, YANG Zhaohui, YUAN Qing, et al. Salient region detection via integrating diffusion-based compactness and local contrast[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3308-3320. doi: 10.1109/TIP.2015.2438546.
    HWANG I, LEE S H, PARK J S, et al. Saliency detection based on seed propagation in a multi-layer graph[J]. Multimedia Tools Applications, 2017, 76(2): 2111-2129. doi: 10.1007 /s11042-015-3171-7.
    GOPALAKRISHNAN V, HU Yiqun, and RAJAN D. Random walks on graphs to model saliency in images[C]. IEEE Conference on Computer Vision, Miami, USA, 2009: 1698-1705. doi: 10.1109/CVPR.2009.5206767.
    FU Keren, GU I Y H, and YANG Jie. Learning full-range affinity for diffusion-based saliency detection[C]. 41st IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1926-1930.
    GONG Chen, TAO Dacheng, LIU Wei, et al. Saliency propagation from simple to difficult[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2531-2539. doi: 10.1109/CVPR.2015.7298868.
    WU Xiaoming, LI Zhenguo, and CHANG Shihfu. New insights into Laplacian similarity search[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1949-1957. doi: 10.1109/CVPR.2015. 7298805.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI. 2012.120.
    OTSU N. A threshold selection method from gray level histograms[J]. IEEE Transactions on System, Man, and Cybernetic, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979. 4310076.
    CHEN Shuhan, ZHENG Ling, HU Xuelong, et al. Discriminative saliency propagation with sink points[J]. Pattern Recognition, 2016, 60: 2-12. doi: 10.1016/j.patcog. 2016.05.016.
    BIRJI A. What is a salient object a dataset and a baseline model for salient object detection[J]. IEEE Transactions on Image Processing, 2015, 24(2): 742-756. doi: 10.1109/TIP. 2014.2383320.
    ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2009: 1597-1604. doi: 10.1109/CVPR.2009.5206596.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1192
  • HTML全文瀏覽量:  102
  • PDF下載量:  309
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-04-25
  • 刊出日期:  2017-08-19

目錄

    /

    返回文章
    返回