基于帶匯點(diǎn)Laplace擴(kuò)散模型的顯著目標(biāo)檢測(cè)
doi: 10.11999/JEIT161296
-
1.
(東北大學(xué)信息科學(xué)與工程學(xué)院 沈陽 110819) ②(東北大學(xué)理學(xué)院 沈陽 110819) ③(東北大學(xué)秦皇島分??刂乒こ虒W(xué)院 秦皇島 066004)
國(guó)家自然科學(xué)基金(51475086),遼寧省自然科學(xué)基金(2014020026)
Salient Object Detection Based on Laplace Diffusion Models with Sink Points
-
1.
(College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
-
2.
(College of Science, Northeastern University, Shenyang 110819, China)
The National Natural Science Foundation of China (51475086), The Natural Science Foundation of Liaoning Province (2014020026)
-
摘要: 該文基于Laplace相似度量的構(gòu)造方法,針對(duì)兩階段顯著目標(biāo)檢測(cè)中顯著種子的不同類型(稀疏或稠密),提出了相應(yīng)的顯著性擴(kuò)散模型,從而實(shí)現(xiàn)了基于擴(kuò)散的兩階段互補(bǔ)的顯著目標(biāo)檢測(cè)。尤其是第2階段擴(kuò)散模型中匯點(diǎn)的融入,一方面更好地抑制了顯著性圖中的背景,同時(shí)對(duì)于控制因子的取值更加穩(wěn)健。實(shí)驗(yàn)結(jié)果表明,當(dāng)顯著種子確定時(shí),不同的擴(kuò)散模型會(huì)導(dǎo)致顯著性擴(kuò)散程度的差異?;趲R點(diǎn)Laplace的兩階段互補(bǔ)的擴(kuò)散模型較其他擴(kuò)散模型更有效、更穩(wěn)健。同時(shí),從多項(xiàng)評(píng)價(jià)指標(biāo)分析,該算法與目前流行的5種顯著目標(biāo)檢測(cè)算法相比,具有較大優(yōu)勢(shì)。這表明此種用于圖像檢索或分類的Laplace相似度量的構(gòu)造方法在顯著目標(biāo)檢測(cè)中也是適用的。
-
關(guān)鍵詞:
- 目標(biāo)檢測(cè) /
- 顯著性 /
- 匯點(diǎn) /
- Laplace矩陣 /
- 擴(kuò)散模型
Abstract: Based on Laplace similarity metrics, corresponding diffusion-based saliency models are proposed according to different clusters (sparse or dense) of salient seeds in the two-stage detection, a diffusion-based two-stage complementary method for salient object detection is therefore investigated. Especially for the introduction of sink points in the second stage, saliency maps obtained by this proposed method can well restrain background parts, as well as become more robust with the change of control factor. Experiments show that different diffusion models will cause diversities of saliency diffusion degree when salient seeds are determined. In addition, the two-stage Laplace-based diffusion model with sink points is more effective and robust than other two-stage diffusion models. Meanwhile, the proposed algorithm is superior over the existing five state-of-the-art methods in terms of different metrics. This exactly shows that the similarity metrics method applied to image retrieval and classification is also available for salient objects detection.-
Key words:
- Object detection /
- Saliency /
- Sink points /
- Laplace matrix /
- Diffusion model
-
SHEN Hao, LI Shuxiao, ZHU Chengfei, et al. Moving object detection in aerial video based on spatiotemporal saliency[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1211-1217. doi: 10.1016/j.cja.2013.07.038. WANG Tiantian, XIU Chunbo, and CHENG Yi. Vehicle recognition based on saliency detection and color histogram [C]. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015: 2532-2535. doi: 10.1109/CCDC.2015.7162347. GUO Chenlei and ZHANG Liming. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1): 185-198. doi: 10.1109/TIP. 2009.2030969. ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1304-1318. doi: 10.1109/TIP.2004.834657. QIN Chanchan, ZHANG Guoping, ZHOU Yicong, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4): 378-391. doi: 10.1016/j.neucom.2013.09.021. LI Ang, SHE Xiaochun, and SUN Qizhi. Color image quality assessment combining saliency and FSIM[C]. Fifth International Conference on Digital Image Processing, Beijing, China, 2013: 88780I-1-88780I-5. doi: 10.1117/12. 2030719. LI Liang, JIANG Shuqiang, ZHA Zhengjun, et al. Partial- duplicate image retrieval via saliency-guided visual matching [J]. IEEE Multimedia, 2013, 20(3): 13-23. doi: 10.1109/ MMUL.2013.15. NA I S, LE H, KIM S H, et al. Extraction of salient objects based on image clustering and saliency[J]. Pattern Analysis and Application, 2015, 18(3): 667-675. doi: 10.1007/s10044- 015-0459-1. HAN Jie, GUO Baolong, and SUN Wei. Target tracking method in aerial video based on saliency fusion[C]. International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shanghai, China, 2015: 723-727. doi: 10.2991/meic-15.2015.165. BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1007/ 978-3-642-33709-3_30. WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]. 12th European Conference on Computer Vision, Florence, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3. FU Keren, GU I Y H, GONG Chen, et al. Robust manifold- preserving diffusion-based saliency detection by adaptive weight construction[J]. Neurocomputing, 2015, 175: 336-347. doi: 10.1016/j.neucom.2015.10.066. SHEN Xiaohui and WU Ying. A unified approach to salient object detection via low rank matrix recovery[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 853-860. doi: 10.1109/CVPR.2012. 6247758. LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. IEEE Conference on Computer Vision, Sydney, Australia, 2013: 2976-2983. doi: 10.1109/ICCV.2013.370. YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Oregon, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013. 407. JIANG Bowen, ZHANG Lihe, LU Huchuan, et al. Saliency detection via absorbing markov chain[C]. IEEE Conference on Computer Vision, Oregon, USA, 2013: 1665-1672. doi: 10.1109/ICCV.2013.209. ZHOU Li, YANG Zhaohui, YUAN Qing, et al. Salient region detection via integrating diffusion-based compactness and local contrast[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3308-3320. doi: 10.1109/TIP.2015.2438546. HWANG I, LEE S H, PARK J S, et al. Saliency detection based on seed propagation in a multi-layer graph[J]. Multimedia Tools Applications, 2017, 76(2): 2111-2129. doi: 10.1007 /s11042-015-3171-7. GOPALAKRISHNAN V, HU Yiqun, and RAJAN D. Random walks on graphs to model saliency in images[C]. IEEE Conference on Computer Vision, Miami, USA, 2009: 1698-1705. doi: 10.1109/CVPR.2009.5206767. FU Keren, GU I Y H, and YANG Jie. Learning full-range affinity for diffusion-based saliency detection[C]. 41st IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1926-1930. GONG Chen, TAO Dacheng, LIU Wei, et al. Saliency propagation from simple to difficult[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2531-2539. doi: 10.1109/CVPR.2015.7298868. WU Xiaoming, LI Zhenguo, and CHANG Shihfu. New insights into Laplacian similarity search[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1949-1957. doi: 10.1109/CVPR.2015. 7298805. ACHANTA R, HEMAMI S, ESTRADA F, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI. 2012.120. OTSU N. A threshold selection method from gray level histograms[J]. IEEE Transactions on System, Man, and Cybernetic, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979. 4310076. CHEN Shuhan, ZHENG Ling, HU Xuelong, et al. Discriminative saliency propagation with sink points[J]. Pattern Recognition, 2016, 60: 2-12. doi: 10.1016/j.patcog. 2016.05.016. BIRJI A. What is a salient object a dataset and a baseline model for salient object detection[J]. IEEE Transactions on Image Processing, 2015, 24(2): 742-756. doi: 10.1109/TIP. 2014.2383320. ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360. ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2009: 1597-1604. doi: 10.1109/CVPR.2009.5206596. -
計(jì)量
- 文章訪問數(shù): 1192
- HTML全文瀏覽量: 102
- PDF下載量: 309
- 被引次數(shù): 0