一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

一種混合特征高效融合的視網(wǎng)膜血管分割方法

蔡軼珩 高旭蓉 邱長(zhǎng)炎 崔益澤

蔡軼珩, 高旭蓉, 邱長(zhǎng)炎, 崔益澤. 一種混合特征高效融合的視網(wǎng)膜血管分割方法[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1956-1963. doi: 10.11999/JEIT161290
引用本文: 蔡軼珩, 高旭蓉, 邱長(zhǎng)炎, 崔益澤. 一種混合特征高效融合的視網(wǎng)膜血管分割方法[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1956-1963. doi: 10.11999/JEIT161290
CAI Yiheng, GAO Xurong, QIU Changyan, CUI Yize. Retinal Vessel Segmentation Method with Efficient Hybrid Features Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1956-1963. doi: 10.11999/JEIT161290
Citation: CAI Yiheng, GAO Xurong, QIU Changyan, CUI Yize. Retinal Vessel Segmentation Method with Efficient Hybrid Features Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1956-1963. doi: 10.11999/JEIT161290

一種混合特征高效融合的視網(wǎng)膜血管分割方法

doi: 10.11999/JEIT161290
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61201360)

Retinal Vessel Segmentation Method with Efficient Hybrid Features Fusion

Funds: 

The National Natural Science Foundation of China (61201360)

  • 摘要: 將機(jī)器學(xué)習(xí)運(yùn)用到視網(wǎng)膜血管分割當(dāng)中已成為一種趨勢(shì),然而選取什么特征作為血管與非血管的特征仍為眾所思考的問(wèn)題。該文利用將血管像素與非血管像素看作二分類(lèi)的原理,提出一種混合的5D特征作為血管像素與非血管像素的表達(dá),從而能夠簡(jiǎn)單快速地將視網(wǎng)膜血管從背景中分割開(kāi)來(lái)。其中5D特征向量包括CLAHE (Contrast Limited Adaptive Histgram Equalization),高斯匹配濾波,Hesse矩陣變換,形態(tài)學(xué)底帽變換,B-COSFIRE(Bar-selective Combination Of Shifted FIlter REsponses),通過(guò)將融合特征輸入SVM(支持向量機(jī))分類(lèi)器訓(xùn)練得到所需的模型。通過(guò)在DRIVE和STARE數(shù)據(jù)庫(kù)進(jìn)行實(shí)驗(yàn)分析,利用Se, Sp, Acc, Ppv, Npv, F1-measure等常規(guī)評(píng)價(jià)指標(biāo)來(lái)檢測(cè)分割效果,其中平均準(zhǔn)確率分別達(dá)到0.9573和0.9575,結(jié)果顯示該融合方法比單獨(dú)使用B-COSFIRE或者其他目前所提出的融合特征方法更準(zhǔn)確有效。
  • 揚(yáng)琴, 趙景秀. 基于主成分分析的血管分割算法[J]. 電子技術(shù)設(shè)計(jì)與應(yīng)用, 2016, 3: 66-70.
    YANG Qin and ZHAO Jingxiu. Blood vessel segmentation algorithm based on principal components analysis[J]. Electronics Design Application, 2016, 45(3): 66-70.
    SINGH N P and SRIVASTAVA R. Retinal blood vessels segmentation by using Gumbel probability distributiaon function based matched filter[J]. Comput Methods Progr Biomed, 2016, 129(C): 40-50. doi: 10.1016/j.cmpb.2016.03. 001.
    FRAZ M M, BASIT A, and BARMAN S A. Application of morphological bit planes in retinal blood vessel extration[J]. Digit Imaging. 2013, 26(2): 274-286. doi: 10.1007/s10278-012- 9513-3.
    FRAZ M M, REMAGNINO P, HOPPE A, et al. Blood vessel segmentation methodologies in retinalimages-A survey[J]. Computer Methods and Programs Biomedicine, 2012, 108(1): 407-433. doi: 10.1016/j.cmpb.2012.03009.
    吳奎, 蔡冬梅, 賈鵬, 等. 基于2D Gabor小波與組合線檢測(cè)算子的視網(wǎng)膜血管分割[J]. 科學(xué)技術(shù)與工程, 2016, 16(12): 106-112.
    WU Kui, CAI Dongmei, JIA Peng, et al. Retinal vessel segmentation based on 2D Gabor wavelet and combined line operators[J]. Science Technology and Engineering, 2016, 16(12): 106-112.
    于輝, 王小鵬. 基于HESSIAN增強(qiáng)和形態(tài)學(xué)尺度空間的視網(wǎng)膜血管分割[J]. 計(jì)算機(jī)應(yīng)用與軟件, 2016, 33(8): 200-205.
    YU Hui and WANG Xiaopeng. Retinal vessels segmentation based on Hessian enhancement and morphological scale space[J]. Computer Applications and Software, 2016, 33(8): 200-205.
    WAHEED Z, AKRAM M U, WAHEED A, et al. Person identification using vascular and non-vascular retinal feature[J]. Computers and Electrical Engineering, 2016, 53: 359-371. doi: 10.1016/j.compeleceng.2016.03.010.
    RICCI E and PERFETTI R. Retinal blood vessel segmentation using line operators and support vector classification[J]. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365. doi: 10.1109/TMI.2007.8985551.
    FRAZ M M, REMAGNINO P, HOPPE A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548. doi: 10.1109/TBME. 2012.2205687.
    AZZOPARDI G, STRISCIUGLIO N, VENTO M, et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Medical Image Analysis, 2015, 19(1): 46-57. doi: 10.1016/j.media.2014.08.002.
    STRISCIUGLIO N, AZZOPARDI G, VENTO M, et al. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters[J]. Machine Vision and Applications, 2016, 27(8): 1137-1149. doi: 10.1007 //s00138-016-0781-7.
    ASLANI S and SARNEL H. A new supervised retinal vessel segmentation method based on robust hybrid feature[J]. Biomedical Singal Processing and Control, 2016, 30: 1-12. doi: 10.1016/j.bspc.2016.05006.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1382
  • HTML全文瀏覽量:  229
  • PDF下載量:  351
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-04-14
  • 刊出日期:  2017-08-19

目錄

    /

    返回文章
    返回