Beyond-BP譯碼算法綜述:原理與應(yīng)用
doi: 10.11999/JEIT161288
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271241, 61671395)
Survey of Beyond-BP Decoding Algorithms: Theory and Applications
Funds:
The National Natural Science Foundation of China (61271241, 61671395)
-
摘要: 低密度奇偶校驗(yàn)碼因其具有逼近香農(nóng)限的優(yōu)異性能,現(xiàn)已在多種標(biāo)準(zhǔn)和系統(tǒng)中得到廣泛的應(yīng)用。但為了使其能夠滿足不同應(yīng)用場(chǎng)景下通信系統(tǒng)對(duì)糾錯(cuò)性能、計(jì)算復(fù)雜性、譯碼時(shí)延、硬件資源損耗以及功耗等方面的要求,需要對(duì)用于LDPC碼譯碼的置信傳播算法進(jìn)行進(jìn)一步的研究與改進(jìn)。該文從譯碼算法的改進(jìn)動(dòng)機(jī)、方法論、計(jì)算復(fù)雜度以及性能表現(xiàn)等角度入手,對(duì)近些年出現(xiàn)的一些Beyond-BP譯碼算法進(jìn)行了綜述。并在最后對(duì)用于迭代接收系統(tǒng)的譯碼算法改進(jìn)工作進(jìn)行了討論,為未來算法的改進(jìn)工作提供一點(diǎn)思路。
-
關(guān)鍵詞:
- 低密度奇偶校驗(yàn)碼 /
- 置信傳播算法 /
- 改進(jìn)的置信傳播算法 /
- 陷阱集 /
- 可靠度 /
- 迭代接收
Abstract: Low Density Parity Check (LDPC) codes are employed in several standards and systems, due to their Shannon limit approaching ability. However, in order to satisfy the communication systems requirements at the aspects of error correction ability, computing complexity, decoding latency, hardware source consumption and power consumption under different application circumstances, the Belief Propagation (BP) algorithm used for decoding LDPC codes needs to be further investigated and improved. In this survey, authors summarize several different Beyond-BP algorithms from the aspects of motivation, methodology, complexity and performance. Moreover, this survey also discusses the optimization of decoding algorithms for iterative receive system, which can provide a reference for further investigation on this topic. -
GALLAGER R G. Low density parity check codes[J]. IEEE Transactions on Information Theory, 1962, 8(1): 21-28. doi: 10.1109/TIT.1962.1057683. MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32(18): 1645-1646. doi: 10.1049/el:19961141. DVB Organization. ETSI EN 302 307 V1. 2. 1. Digital Video Broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2)[S]. 2009. IEEE P802.11 Task Group ad. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications[S]. 2010. CCSDS. CCSDS 230.2-G-1-next generation uplink[R]. Washington, DC, USA, 2014. FOSSORIER M, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673-680. doi: 10.1109/26. 768759. TANNER R M. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533-547. doi: 10.1109/TIT.1981.1056404. DAVEY M and MACKAY D. Low density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165-167. doi: 10.1109/4234.681360. WYMEERSCH H, STEENDAM H, and MOENECLAEY M. Log-domain decoding of LDPC codes over GF(q)[C]. IEEE International Conference on Communications, Paris, France, 2004: 772-776. WANG C, CHEN X, LI Z, et al. A simplified min-sum decoding algorithm for non-binary LDPC codes[J]. IEEE Transactions on Communications, 2013, 61(1): 24-32. doi: 10.1109/TCOMM.2012.101712.110709. 楊威, 張為. 一種基于分層譯碼和Min-max的多進(jìn)制LDPC碼譯碼算法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1677-1681. doi: 10.3724/SP.J.1146.2012.01634. YANG W and ZHANG W. A decoding algorithm based on layered decoding and min-max for non binary LDPC codes[J]. Journal of Electronics Information Technology, 2013, 35(7), 1677-1681. doi: 10.3724/SP.J.1146.2012.01634. LI E, DECLERCQ D, and GUNNAM K. Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware structure[J]. IEEE Transactions on Communications, 2013, 61(7): 2600-2611. doi: 10.1109/ TCOMM.2013.050813.120489. ZHAO D, MA X, CHEN C, et al. A low complexity decoding algorithm for majority-logic decodable nonbinary LDPC codes[J]. IEEE Communications Letters, 2010, 14(11): 1062-1064. doi: 10.1109/LCOMM.2010.100810.101403. CHEN C, HUANG Q, and CHAO C. Two low-complexity reliability based message-passing algorithms for decoding non-binary LDPC codes[J]. IEEE Transactions on Communications, 2010, 58(11): 3140-3147. doi: 10.1109/ TCOMM.2010.091310.090327. HUANG Q, ZHANG M, WANG Z, et al. Bit-reliability based low-complexity decoding algorithms for non-binary LDPC codes[J]. IEEE Transactions on Communications, 2014, 62(12): 4230-4240. doi: 10.1109/TCOMM.2014.2370032. LIU X, LIANG C, ZHANG Y, et al. Decoding of non-binary low-density parity-check codes based on the genetic algorithm and applications over mobile fading channels [J]. IET Communications, 2015, 9(16): 1941-1948. doi: 10. 1049/iet-com.2015.0085. WAINWRIGHT M, JAAKKOLA T, and WILLSKY A. A new class of upper bounds on the log partition function [J]. IEEE Transactions on Information Theory, 2005, 51(7) : 2313-2335. doi: 10.1109/TIT.2005.850091. WYMEERSCH H, PENNA F, and SAVIC V. Uniformly reweighted belief propagation for estimation and detection in wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1587-1595. doi: 10.1109/TWC. 2012.021412.111509. LIU J and DE LAMARER C. Low-latency reweighted belief propagation decoding for LDPC codes[J]. IEEE Communications Letters, 2012, 16(10): 1660-1663. doi: 10. 1109/LCOMM.2012.080312.121307. WYMEERSCH H, PENNA F, SAVIC V, et al. Comparison of reweighted message passing algorithms for LDPC decoding [C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 3264-3269. DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity approaching protograph codes[J]. IEEE Journal on Select Areas in Communications, 2009, 27(6): 876-888. doi: 10.1109 /JSAC.2009.090806. HU X Y, ELEFTHERIOU E, and ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs [J]. IEEE Transactions on Information Theory, 2005, 51(1): 386-398. doi: 10.1109/TIT.2004.839541. RYAN W E and LIN S. Channel Codes: Classical and Modern[M]. Cambridge University Press, 2009. VASIC B, CHILAPPAGARI S K, NGUYEN D V, et al. Trapping set ontology[C]. 47th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2009: 1-7. HAN Y and RYAN W E. Low-floor decoders for LDPC codes[J]. IEEE Transactions on Communications, 2009, 57(6): 1663-1673. doi: 10.1109/TCOMM.2009.06.070325. HAN Y and RYAN W E. Low-floor detection/decoding of LDPC-coded partial response channels[J]. IEEE Journal on Select Areas in Communications, 2010, 28(2): 252-260. doi: 10.1109/JSAC.2010.100214. VARNICA N, FOSSORIER M P, and KAVCIC A. Augmented belief propagation decoding of low-density parity-check codes[J]. IEEE Transactions on Communications, 2007, 55(7): 1308-1317. doi: 10.1109/ TCOMM.2007.900611. KANG J, ZHANG L, DING Z, et al. A two-stage iterative decoding of LDPC codes for lowering error floors[C]. IEEE Global Telecommunication Conference, New Orleans, USA, 2008: 1-4. 呂毅博. 多元差分混沌通信系統(tǒng)數(shù)字迭代接收關(guān)鍵技術(shù)研究[D]. [Ph.D. dissertation], 廈門大學(xué), 2016: 30-37. MAO Y Y and BANIHASHEMI A H. Decoding low-density parity-checkcodes with probabilistic scheduling[J]. IEEE Communications Letters, 2001, 5(10): 414-416. doi: 10.1109 /4234.957379. CASADO A V, GRIOT M, and WESEL R. Informed dynamic scheduling for belief-propagation decoding of LDPC codes[C]. IEEE International Conference on Communications, Glasgow, UK, 2007: 932-937. HOCEVAR D. A reduced complexity decoder architecture via layered decoding of LDPC codes[C]. IEEE Workshop on Signal Processing Systems, Austin, USA, 2004: 107-112. CASADO A, GRIOT M, and WESEL R. LDPC decoders with informed dynamic scheduling[J]. IEEE Transactions on Communications, 2010, 58(12): 3470-3479. doi: 10.1109/ TCOMM.2010.101910.070303. LEE H C, UENG Y L, YEH S M, et al. Two informed dynamic scheduling strategies for iterative LDPC decoders[J]. IEEE Transactions on Communications, 2013: 61(3): 886-896. doi: 10.1109/TCOMM.2013.012313.120172. LIU X, ZHANG Y, and CUI R. Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19(2): 147-150. doi: 10.1109/LCOMM.2014.2385096. LIU X, ZHOU Z, CUI R, et al. Informed decoding algorithms of LDPC codes based on dynamic selection strategy[J]. IEEE Transactions on Communications, 2016, 64(4): 1357-1366. doi: 10.1109/TCOMM.2016.2527642. IEEE C802.16e-05/0066r3.LDPC Coding for OFDMA PHY [S]. 2005. KIM J H, NAM M Y, and SONG H Y. Variable-to-check residual belief propagation for LDPC codes[J]. Electronics Letters, 2009, 45(2): 117-118. doi: 10.1049/el:20092505. 馬卓, 杜栓義, 王新梅. 基于量化的LDPC譯碼算法的高效實(shí)現(xiàn)[J]. 電子與信息學(xué)報(bào), 2011, 33(9): 2273-2277. doi: 10.3724/ SP.J.1146.2011.00041. MA Z, DU S Y, and WANG X M. Efficient Implementing of LDPC decoding algorithm based on quantization[J]. Journal of Electronics Information Technology, 2011, 33(9): 2273-2277. doi: 10.3724/ SP.J.1146.2011.00041. JIAN Y Y and PFISTER H D. Convergence of weighted Min-Sum decoding via dynamic programming on trees[J]. IEEE Transactions on Information Theory, 2014, 60(2): 943-963. doi: 10.1109/TIT.2013.2290303. 姜明, 王晨. 基于原型圖的低碼率LDPC碼最小和譯碼算法改進(jìn)方案[J]. 電子與信息學(xué)報(bào), 2010, 32(11): 2781-2784. doi: 10.3724/SP.J.1146.2009.01652. JIANG M and WANG C. An improvement on the Min-sum algorithm for low-rate protograph LDPC codes[J]. Journal of Electronics Information Technology, 2010, 32(11): 2781-2784. doi: 10.3724/SP.J.1146.2009.01652. KONG L, JIANG Y, HAN G, et al. Improved Min-Sum decoding for 2-D intersymbol interference Channels[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. doi: 10.1109/ TMAG.2014.2317749. JIANG M, ZHAO C, SHI Z, et al. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes[J]. IEEE Communications Letters, 2005, 9(9): 814-816. doi: 10.1109/LCOMM.2005.1506712. 張高遠(yuǎn), 周亮, 文紅. LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法研究[J].電子與信息學(xué)報(bào), 2014, 36(9): 2093-2097. doi: 10.3724/SP.J. 1146.2013.01622. ZHANG G, ZHOU L, and WEN H. Research on weighted bit-flipping decoding algorithm for LDPC codes[J]. Journal of Electronics Information Technology, 2014, 36(9): 2093-2097. doi: 10.3724/SP.J.1146.2013.01622. FENG G and HANZO L. Reliability ratio based weightedbit- flipping decoding for low-density parity-check codes[J]. Electronics Letters, 2004, 40(21): 1356-1358. doi: 10.1049/ el:20046400. CHANG T C and SU Y T. Dynamic weighted bit-flipping decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2015, 63(11): 3950-3963. doi: 10.1109/ TCOMM.2015.2469780. 張高遠(yuǎn), 周亮, 蘇偉偉, 等. 基于平均幅度的LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法[J]. 電子與信息學(xué)報(bào), 2013, 35(11): 2572-2578. doi: 10.3724/SP.J.1146.2012.01728. ZHANG G Y, ZHOU L, SU W W, et al. Average magnitude based weighted bit-flipping decoding algorithm for LDPC codes[J]. Journal of Electronics Information Technology, 2013, 35(11): 2572-2578. doi: 10.3724/SP.J.1146.2012.01728. 張高遠(yuǎn), 周亮, 文紅. 基于幅度和的LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(4): 752-757. doi: 10.3969/j.issn.1001-506X.2014.04.24. ZHANG G Y, ZHOU L, and WEN H. Sum of the magnitude based weighted bit-flipping decoding algorithm for LDPC codes[J]. Systems Engineering and Electronics, 2014, 36(4): 752-757. doi: 10.3969/j.issn.1001-506X.2014.04.24. 陶雄飛, 王躍東, 柳盼. 基于變量節(jié)點(diǎn)更新的LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 688-693. doi: 10.11999/JEIT150720. TAO X F, WANG Y D, and LIU P. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics Information Technology, 2016, 38(3): 688-693. doi: 10.11999/JEIT150720. ZHAO J, ZARKESHVARI F, and BANIHASHEMI A H. On implementation of min-sum algorithm and its modifications for decoding low-density parity-check codes[J]. IEEE Transactions on Communications, 2005, 53(4): 549-554. doi: 10.1109/TCOMM.2004.836563. ZHANG Z, DOLECEK L, NIKOLIC B, et al. Design of LDPC decoders for improved low error rate performance: Quantization and algorithm choices[J]. IEEE Transactions on Communications, 2009, 57(11): 3258-3268. doi: 10.1109/ TCOMM.2009.11.080105. PLANJERY S K, DECLERCQ D, DANJEAN L, et al. Finite alphabet iterative decoderspart I: Decoding beyond belief propagation on the binary symmetric channel[J]. IEEE Transactions on Communications, 2013, 61(10): 4033-4045. doi: 10.1109/TCOMM.2013.090513.120443. DECLERCQ D, VASIC B, PLANJERY S K, et al. Finite alphabet iterative decoderspart II: Towards guaranteed error correction of LDPC codes via iterative decoder diversity [J]. IEEE Transactions on Communications, 2013, 61(10): 4046-4057. doi: 10.1109/ TCOMM.2013.090513.120444. CAI F, ZHANG X, DECLERCQ D, et al. Finite alphabet iterative decoders for LDPC codes: Optimization, architecture and analysis[J]. IEEE Transactions on Circuits Systems I: Regular Papers, 2014, 61(5): 1366-1375. doi: 10.1109/TCSI. 2014.2309896. TRAN N H, NGUYEN H H, and LE-NGOC T. Performance analysis and design criteria of BICM-ID with signal space diversity for keyhole Nakagami-m fading channels[J]. IEEE Transactions on Information Theory, 2009, 55(4): 1592-1602. doi: 10.1109/TIT.2009.2013001. AHMED S. Soft metrics and EXIT chart analysis of non-coherent MFSK with diversity reception in Rician fading channel[J]. IEEE Transactions on Wireless Communications, 2011, 10(6): 1692-1696. doi: 10.1109/TWC.2011.032411. 100499. CHOI J and HA J. Iterative demodulation and decoding of uplink multiuser m-ary FSK using OFDMA mapping[J]. IEEE Communications Letters, 2013, 17(9): 1842-1845. doi: 10.1109/LCOMM.2013.070913.131359. UCHOA A G D, HEALY C, and DELAMARE R C. Iterative detection and decoding algorithms for MIMO systems in block-fading channels using LDPC codes[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2735-2741. doi: 10.1109/TVT.2015.2432099. LYU Y, WANG L, CAI G, et al. Iterative receiver for m-ary DCSK systems[J]. IEEE Transactions on Communications, 2015, 63(11): 3929-3936. doi: 10.1109/TCOMM.2015. 2425877. LYU Y, WANG L, and XIONG Z. Performance advantage of joint source-channel decoder over iterative receiver under m-ary differential chaotic shift keying systems[C]. IEEE Vehicular Technology Conference 2016 Spring, Nanjing, China, 2016: 1-5. -
計(jì)量
- 文章訪問數(shù): 1819
- HTML全文瀏覽量: 186
- PDF下載量: 590
- 被引次數(shù): 0