基于網(wǎng)格細(xì)胞到位置細(xì)胞轉(zhuǎn)換的位置估計模型
doi: 10.11999/JEIT161284
基金項目:
國家自然科學(xué)基金(61273048, 61603409)
Location Estimation Model Based on the Transformation from Grid Cells to Place Cells
Funds:
The National Natural Science Foundation of China (61273048, 61603409)
-
摘要: 為實現(xiàn)運行體智能自主定位,該文提出一種基于網(wǎng)格細(xì)胞到位置細(xì)胞轉(zhuǎn)換的位置估計模型。結(jié)合網(wǎng)格細(xì)胞和位置細(xì)胞的放電機理以及它們之間的信息轉(zhuǎn)換關(guān)系,將位置估計模型分為空間環(huán)境學(xué)習(xí)與記憶、運動狀態(tài)感知和位置估計3部分,給出了各個部分實現(xiàn)原理和具體操作步驟,最后利用提出的模型對運行體定位問題進行了仿真實驗。結(jié)果表明,所提模型能實現(xiàn)運行體自主定位,且定位性能可通過改變模型中網(wǎng)格細(xì)胞和位置細(xì)胞參數(shù)進行調(diào)整。
-
關(guān)鍵詞:
- 仿生導(dǎo)航 /
- 位置估計 /
- 網(wǎng)格細(xì)胞 /
- 位置細(xì)胞 /
- 徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)
Abstract: To achieve intelligent and autonomous positioning for the vehicle, this paper presents a location estimation model based on the transformation from grid cells to place cells. Combining with the firing characteristic of the grid cells, place cells, and the information transformation between them, this location estimation model is divided into three parts, including the learning and memorizing of spatial environment, the perception of the motion state and the estimation of the spatial location. The principle and the specific steps of each part are discussed. Finally, the proposed model is applied to vehicles positioning by simulation. Simulation validates that the proposed model is feasible to achieve vehicles autonomous positioning, and the positioning performance can be adjusted by changing the parameters of grid cells and place cells included in the model. -
李偉龍, 吳德偉, 周陽, 等. 基于生物位置細(xì)胞放電機理的空間位置表征方法[J]. 電子與信息學(xué)報, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331. LI Weilong, WU Dewei, ZHOU Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331. ZHOU Y, WU D W, DU J, et al. A computational model for landmarks acquisition in positioning[J]. Journal of Intelligent Robotic Systems, 2016, 82(3): 537-553. doi: 10.1007/ s10846-015-0276-1. OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1. KEINATH A T. The preferred directions of conjunctive grid x head direction cells in the medial entorhinal cortex are periodically organized[J]. Plos One, 2016, 11(3): e0152041. doi: 10.1371/journal.pone.0152041. BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507520. doi: 10.1016/j. neuron.2015.07.006. MCNAUGHTON B L, BATTAGLIA F P, JENSEN O, et al. Path integration and the neural basis of the cognitive map [J]. Neuroscience, 2006, 7(8): 663-678. doi: 10.1038/nrn1932. GAUSSIER P, REVEL A, BANQUET J P, et al. From view cells and place cells to cognitive map learning: Processing stages of the hippocampal system[J]. Biological Cybernetics, 2002, 86(1): 15-28. doi: 10.1007/s004220100269. JAUFFRET A, CUPERLIER N, GAUSSIER P, et al. Multimodal integration of visual place cells and grid cells for navigation tasks of a real robot[J]. LNAI, 2012: 136-145. doi: 10.1007/978-3-642-33093-3_14. WALTERS D M and STRINGER S M. Path integration of head direction: Updating a packet of neural activity at the correct speed using neuronal time constants[J]. Plos One, 2013, 8(3): e58330. doi: 10.1371/journal.pone.0058330. ERDEM U M and HASSELMO M E. A biologically inspired hierarchical goal directed navigation model[J]. Journal of Physiology-Paris, 2014, 108(1): 28-37. doi: 10.1016/j. jphysparis.2013.07.002. HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721. LYTTLE D, LIN K, and FELLOUS J M. Coding, stability, and non-spatial inputs in a modular grid-to-place cell model[J]. BMC Neuroscience, 2012, 13(1): 141-142. doi: 10.1186/1471-2202-13-s1-p141. JAUFFRET A, CUPERLIER N, and GAUSSIER P. From grid cells and visual place cells to multimodal place cell: A new robotic architecture[J]. Frontiers in Neurorobotics, 2015, 9: 1-20. doi: 10.3389/fnbot.2015.00001. MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brains spatial representation system[J]. Annual Review of Neuroscience, 2008, 31(1): 69-89. doi: 10.1146/ annurev.neuro.31.061307.090723. GIOCOMO L M, MOSER M B, and MOSER E I. Computational models of grid cells[J]. Neuron, 2011, 71(4): 589-603. doi: 10.1016/j.neuron.2011.07.023. SI B and TREVES A. The role of competitive learning in the generation of DG fields from EC inputs[J]. Cognitive Neurodynamics, 2009, 3(2): 177-187. doi: 10.1007/s11571- 009-9079-z. OKEEFE J and BURGES N. Geometrical determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0. -
計量
- 文章訪問數(shù): 1355
- HTML全文瀏覽量: 255
- PDF下載量: 264
- 被引次數(shù): 0