一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于NSGA2的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽種子節(jié)點(diǎn)選擇

李磊 楚喻棋 汪萌 韓莉 吳信東

李磊, 楚喻棋, 汪萌, 韓莉, 吳信東. 基于NSGA2的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽種子節(jié)點(diǎn)選擇[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2040-2047. doi: 10.11999/JEIT161266
引用本文: 李磊, 楚喻棋, 汪萌, 韓莉, 吳信東. 基于NSGA2的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽種子節(jié)點(diǎn)選擇[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2040-2047. doi: 10.11999/JEIT161266
LI Lei, CHU Yuqi, WANG Meng, HAN Li, WU Xindong. NSGA2-based Multi-label Seed Node Selection in Network Environments[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2040-2047. doi: 10.11999/JEIT161266
Citation: LI Lei, CHU Yuqi, WANG Meng, HAN Li, WU Xindong. NSGA2-based Multi-label Seed Node Selection in Network Environments[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2040-2047. doi: 10.11999/JEIT161266

基于NSGA2的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽種子節(jié)點(diǎn)選擇

doi: 10.11999/JEIT161266
基金項(xiàng)目: 

國(guó)家973規(guī)劃項(xiàng)目(2013CB329604),國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFB1000901),國(guó)家自然科學(xué)基金項(xiàng)目(61503114)

NSGA2-based Multi-label Seed Node Selection in Network Environments

Funds: 

The National 973 Program of China (2013CB329604), The National Key Research and Development Program of China (2016YFB1000901), The National Natural Science Foundation of China (61503114)

  • 摘要: 隨著社交網(wǎng)絡(luò)規(guī)模的不斷擴(kuò)大,網(wǎng)絡(luò)節(jié)點(diǎn)的標(biāo)簽分類也不再單一,變得豐富多樣,這些促使了社交網(wǎng)絡(luò)中的多標(biāo)簽分類問題成為一個(gè)重要的研究領(lǐng)域。以前的研究重點(diǎn)主要集中在提高預(yù)測(cè)網(wǎng)絡(luò)節(jié)點(diǎn)標(biāo)簽的精度上,而忽略了得到節(jié)點(diǎn)信息所產(chǎn)生的包含時(shí)間消耗和計(jì)算資源等在內(nèi)的系統(tǒng)開銷問題??涩F(xiàn)如今隨著網(wǎng)絡(luò)規(guī)模不斷擴(kuò)大且復(fù)雜性不斷增強(qiáng),之前所忽略的系統(tǒng)開銷問題變得越來越嚴(yán)重,增加了預(yù)測(cè)標(biāo)簽的成本,加重了預(yù)測(cè)網(wǎng)絡(luò)節(jié)點(diǎn)標(biāo)簽的難度。該文針對(duì)這一問題提出了基于NSGA2算法的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽種子節(jié)點(diǎn)選擇算法(NAMESEA算法),目的是在能大大降低預(yù)測(cè)節(jié)點(diǎn)標(biāo)簽所消耗的系統(tǒng)開銷的前提下一定程度上提高預(yù)測(cè)標(biāo)簽的精度。該文將NAMESEA算法與其他多標(biāo)簽預(yù)測(cè)算法在多個(gè)真實(shí)數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn)對(duì)比,結(jié)果證明NAMESEA算法大大降低了預(yù)測(cè)節(jié)點(diǎn)標(biāo)簽的系統(tǒng)開銷并且提高了預(yù)測(cè)精度。
  • WANG X and SUKTHANKAR G. Multi-label relational neighbor classification using social context features[C]. Proceedings of the 15th ACM SIGKDD International Conference on knowledge Discovery and Data Mining, Chicago, USA, 2013: 464-472.
    吳信東, 趙銀鳳, 李磊. 基于種子節(jié)點(diǎn)選擇的網(wǎng)絡(luò)環(huán)境下多標(biāo)簽分類算法研究[J]. 電子學(xué)報(bào), 2016, 44(9): 2074-2080. doi: 10.3969/j.issn.0372-2112.2016.09.008.
    WU Xingdong, ZHAO Yinfeng, and LI Lei. Multi-label classification in network environments via seed nodes selection[J]. Acta Electronica Sinica, 2016, 44(9): 2074-2080. doi: 10.3969/j.issn.0372-2112.2016.09.008.
    LI Lei, HE Jianping, WANG Meng, et al. Trust agent-based behavior induction in social networks[J]. IEEE Intelligent Systems, 2016, 30(1): 24-30. doi: 10.1109/ MIS.2016.6.
    許宇光, 潘驚治, 謝惠揚(yáng). 基于最小點(diǎn)覆蓋和反饋點(diǎn)集的社交網(wǎng)絡(luò)影響最大化算法[J]. 電子與信息學(xué)報(bào), 2016, 38(4): 795-802. doi: 10.11999/JEIT160019.
    XU Yuguang, PAN Jingzhi, and XIE Huiyang. Minimum vertex covering and feedback vertex set-based algorithm for influence maximization in social network[J]. Journal of Electronics Information Technology, 2016, 38(4): 795-802. doi: 10.11999/JEIT160019.
    陳季夢(mèng), 陳佳俊, 劉杰, 等. 基于結(jié)構(gòu)相似度的大規(guī)模社交網(wǎng)絡(luò)聚類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 449-454. doi: 10.11999/JEIT140512.
    CHEN Jimeng, CHEN Jiajun, LIU Jie, et al. Clustering algorithms for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512.
    ZHANG M and ZHOU Z. A k-nearest neighbor based algorithm for multi-label classification[C]. Proceedings of the IEEE International Conference on Granular Computing, Beijing, China, 2005: 718-721.
    HULLER E, FURNKRANZ J, CHENG W, et al. Label ranking by learning pairwise preferences[J]. Artificial Intelligence, 2008, 172(16): 1897-1916. doi: 10.1016/j.artint. 2008.08.002.
    MACSKASSY S and PROVOST F. A simple relational classifier[C]. Proceedings of the Second Workshop on Multi- Relational Data Mining at ACM SIGKDD, Washington, DC, USA, 2003: 64-76.
    BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771. doi: 10.1016/j.patcog.2004.03.009.
    劉世超, 朱福喜, 甘琳. 基于標(biāo)簽傳播概率的重疊社區(qū)發(fā)現(xiàn)算法[J]. 計(jì)算機(jī)學(xué)報(bào), 2016, 39(4): 717-729. doi: 10.11897/SP.J. 1016.2016.00717.
    LIU Shichao, ZHU Fuxi, and GAN Lin. A label-propagation- probability-based algorithm for overlapping community detection[J]. Chinese Journal of Computers, 2016, 39(4): 717-729. doi: 10.11897/SP.J.1016.2016.00717.
    邢千里, 劉列, 劉奕群, 等. 微博中用戶標(biāo)簽的研究[J]. 軟件學(xué)報(bào), 2015, 26(7): 1626-1637. doi: 10.13328/j.cnki.jos.004655.
    XING Qianli, LIU Lie, LIU Yiqun, et al. Study on user tags in Weibo[J]. Journal of Software, 2015, 26(7): 1626-1637. doi: 10.13328/j.cnki.jos.004655.
    ZHANG Ling and ZHOU Zhihua. A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. doi: 10.1016/j.patcog.2006.12.019.
    TANG L and LIU H. Scalable learning of collective behavior based on sparse social dimensions[C]. Proceedings of the ACM CIKM, Hong Kong, China, 2009: 1107-1116.
    申超波, 王志海, 孫艷歌.基于標(biāo)簽聚類的多標(biāo)簽分類算法[J]. 軟件, 2014, 33(8): 16-21. doi: 10.3969/j.issn.1003-6970. 2014.08.004.
    SHEN Chaobo, WANG Zhihai, and SUN Yange. A multi- label classification algorithm based on label clustering[J]. Software, 2014, 33(8): 16-21. doi: 10.3969/j.issn.1003-6970. 2014.08.004.
    鄭偉, 王朝坤, 劉璋, 等.一種基于隨機(jī)游走模型的多標(biāo)簽分類算法[J]. 計(jì)算機(jī)學(xué)報(bào), 2010, 33(8): 1418-1426. doi: 10.3724/ SP.J.1016.2010.01418.
    ZHENG Wei, WANG Chaokun, LIU Zhang, et al. A multi-label classification algorithm based on random walk model[J]. Chinese Journal of Computers, 2010, 33(8): 1418-1426. doi: 10.3724/SP.J.1016.2010.01418.
    張振海, 李士寧, 李志剛, 等. 一類基于信息熵的多標(biāo)簽特征選擇算法[J]. 計(jì)算機(jī)研究與發(fā)展, 2013, 50(6): 1177-1184.
    ZHANG Zhenhai, LI Shining, LI Zhigang, et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    KALYANMOY D, AMRIT P, SAMEER A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    劉曉娟, 閆海蘭. 基于NSGA2算法的并行機(jī)多目標(biāo)調(diào)度問題研究[J]. 物聯(lián)網(wǎng)技術(shù), 2013, 10(1): 43-47.
    LIU Xiaojuan and YAN Hailan. Research on the multi- objective scheduling problem of parallel machine based on NSGA2 algorithm[J]. Internet of Things, 2013, 10(1): 43-47.
    孫建龍, 吳鎖平, 陳燕超. 基于改進(jìn)NSGA2算法的配電網(wǎng)分布式電源優(yōu)化配置[J]. 電力建設(shè), 2014, 35(2): 86-90. doi: 10.3969/j.issn.1000-7229.2014.02.017.
    SUN Jianlon, WU Suoping, and CHEN Yanchao. Optimal configuration of distributed generation in distribution network based on improved NSGA2[J]. Electric Power Construction, 2014, 35(2): 86-90. doi: 10.3969/j.issn.1000- 7229.2014.02.017.
    張利. NSGA2算法及其在電力系統(tǒng)穩(wěn)定器參數(shù)優(yōu)化中的應(yīng)用[D]. [碩士論文], 西南交通大學(xué), 2013: 3-9.
    ZHANG Li. NSGA2 Algorithm and its application in optimizing power system stabilizer parameters[D]. [Master dissertation],Southwest Jiaotong University, 2013: 3-9.
    NEVILLE J, GALLAGHER B, ELIASSI-RAD T, et al. Correcting evaluation bias of relational classifiers with network cross validation[J]. Intelligent Systems, 2016, 31(1), 24-30. doi: 10.1007/s10115-010-0373-1.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1353
  • HTML全文瀏覽量:  135
  • PDF下載量:  346
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-04-11
  • 刊出日期:  2017-09-19

目錄

    /

    返回文章
    返回