基于離散Tchebichef變換的多聚焦圖像融合方法
doi: 10.11999/JEIT161217
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61572092),國(guó)家自然科學(xué)基金-廣東聯(lián)合基金(U1401252)
Multi-focus Image Fusion Based on Discrete Tchebichef Transform
Funds:
The National Natural Science Foundation of China (61572092), The National Natural Science Foundation of China-The Mutual fund of Guangdong Province (U1401252)
-
摘要: 基于變換技術(shù)的圖像融合是多聚焦圖像融合中常采用的方法,其過程是將圖像轉(zhuǎn)換到變換域按照一定的融合規(guī)則進(jìn)行融合后再反變換回來(lái),具有較強(qiáng)的抗噪能力,融合效果明顯。該文提出一種基于離散Tchebichef正交多項(xiàng)式變換的多聚焦圖像融合方法,首次將離散正交多項(xiàng)式變換應(yīng)用到多聚焦圖像融合領(lǐng)域。該方法成功地利用了圖像的空間頻率與其離散Tchebichef正交多項(xiàng)式變換系數(shù)之間的關(guān)系,通過離散正交多項(xiàng)式變換系數(shù)直接得到空間頻率值,避免了將離散多項(xiàng)式變換系數(shù)變換到空域計(jì)算的過程。所提方法節(jié)省了融合時(shí)間,并提高了融合效果。
-
關(guān)鍵詞:
- 多聚焦圖像融合 /
- 離散正交多項(xiàng)式變換 /
- 空間頻率
Abstract: Image fusion based on image transform technologies is always used in multi-focus image fusion. It transforms images into transform domain and fuses the transformed image according to a specific fusion rule. After that, the fused image is achieved by the inverse image transform. The transform based image fusion methods are robust to noise and the fused results are widely accepted. This paper proposes a multi-focus image fusion method based on discrete Tchebichef orthogonal polynomial transform. Discrete orthogonal polynomial transform is firstly introduced to the field of multi-focus image fusion. The proposed method combines the spatial frequency with the discrete orthogonal polynomial transform coefficients of image, and it directly achieves the value of spatial frequency by the discrete orthogonal polynomial transform coefficients of the image and avoids the process of recalculation that transforms the discrete orthogonal polynomial transform coefficients to space domain. The proposed method can reduce the fusing time in multi-focus image fusion and improves the fusion effect. -
GUO D, YAN J, and QU X. High quality multi-focus image fusion using self-similarity and depth information[J]. Optics Communications, 2015, 338: 138-144. LI T and WANG Y. Biological image fusion using a NSCT based variable-weight method[J]. Information Fusion, 2011, 12(2): 85-92. Thomas C, Ranchin T, Wald L, et al. Synthesis of Multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience Remote Sensing, 2008, 46(5): 1301-1312. GARG R, GUPTA P, and KAUR H. Survey on multi-focus image fusion algorithms[C]. IEEE Engineering and Computational Sciences, Chengdu, China, 2014: 1-5. WEI Chunyu, ZHOU Bingyin, and GUO Wei. Novel fusion rules for transform-domain image fusion methods[C]. International Conference on Mechatronics and Industrial Informatics, Paris, France, 2015: 846-850. doi: 10.2991/ icmii-15.2015.147. LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139-155. doi: 10.1016/j.inffus.2014.05.004. WANG Zhaobin, MA Yide, and GU Jason. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003-2016. doi: 10.1016/j.patcog.2010.01.011. TANG J. A contrast based image fusion technique in the DCT domain[J]. Digital Signal Processing, 2004, 14(3): 218-226. doi: 10.1016/j.dsp.2003.06.001. 陸剛, 肖斌, 王國(guó)胤. 基于離散Tchebichef矩和軟決策化的圖像壓縮[J]. 計(jì)算機(jī)科學(xué), 2016, 43(11): 304-308. LU Gang, XIAO Bin, and WANG Guoyin. Image compression based on discrete Tchebichef and soft decision[J]. Computer Science, 2016, 43(11): 304-308. LI Shutao and YANG Bin. Multifocus image fusion using region segmentation and spatial frequency[J]. Image Vision Computing, 2008, 26(7): 971-979. doi: 10.1016/j.imavis.2007. 10.012. QU Xiaobo, YAN Jingwen, and XIAO Hongzhi. Image fusion algotithm based on spatial frequency-motivatie pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12): 1508-1514. PHAMILA Y A V and AMUTHA R. Discrete cosine transform based fusion of multi-focus images for visual sensor networks[J]. Signal Processing, 2014, 95(2): 161-170. doi: 10.1016/j.sigpro.2013.09.001. LI Shutao, KWOK J T, and WANG Y. Combination of images with diverse focuses using the spatial frequency[J]. Information Fusion, 2001, 2(3): 169-176. doi: 10.1016/S1566- 2535(01)00038-0. 鄧艾, 吳謹(jǐn), 楊莘, 等. 基于二代Curvelet變換和區(qū)域匹配度的圖像融合算法[J]. 計(jì)算機(jī)科學(xué), 2012, 39(S1): 513-514. DENG Ai, WU Jin, YANG Hua, et al. Image fusion based on second generation Curvelet and regional compatibility[J]. Computer Science, 2012, 39(S1): 513-514. XU Shaofan, LIU Xianfeng, and DI Hongwei. An image fusion quality assessment based on structural similarity[J]. Journal of Jinan University, 2007, 28(5): 470-473. PIELLA G and HEIJMANS H. A new quality metric for image fusion[C]. Proceedings of the IEEE International Conference on Image Processing, Chongqing, China, 2003, 2: III-173-6. WANG Z and ALAN C Bovik. Reduced- and no-reference image quality assessment[J]. IEEE Signal Processing Magazine, 2011, 28(6): 29-40. -
計(jì)量
- 文章訪問數(shù): 1257
- HTML全文瀏覽量: 124
- PDF下載量: 372
- 被引次數(shù): 0