基于MEMS技術(shù)的非接觸式人體靜電測量裝置
doi: 10.11999/JEIT161190
-
2.
(中國科學(xué)院電子學(xué)研究所傳感技術(shù)聯(lián)合國家重點實驗室 北京 100190) ②(北京中科飛龍傳感技術(shù)有限責(zé)任公司 北京 100084
國家自然科學(xué)基金(61302032, 61327810)
Non-contact Human Body Electrostatic Voltmeter Based on MEMS Technology
-
2.
(State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China)
The National Natural Science Foundation of China (61302032, 61327810)
-
摘要: 為解決傳統(tǒng)非接觸式靜電儀工作時振動或旋轉(zhuǎn)部件裸露在外,無法在靜電高危區(qū)域使用,難以測量運動人體帶電情況等難題,該文研制出基于MEMS電場傳感器的非接觸式靜電測量裝置。提出一種新型檢測電極與敏感芯片相連結(jié)構(gòu),顯著增大了電場感應(yīng)面積,增強了靈敏度。設(shè)計11個檢測電極分布式布置形成門體結(jié)構(gòu),成功實現(xiàn)人體頭、肩、臂、手、腿、腳部位在運動過程中帶電情況的同時測量?;诮饘俜抡鎺щ娙梭w,提出模擬應(yīng)用現(xiàn)場的標(biāo)定方法,準(zhǔn)確實現(xiàn)了靜電安檢門的標(biāo)定。該靜電測量裝置具有無裸露可動部件、安全性高、環(huán)境適應(yīng)性強等突出優(yōu)點,滿足粉塵濃度高、易燃油氣濃度高等惡劣環(huán)境下的使用需求。試驗結(jié)果表明,該裝置測量范圍為-30~30 kV,分辨力優(yōu)于50 V,總不確定度優(yōu)于3%。
-
關(guān)鍵詞:
- 微機械電子系統(tǒng) /
- 電場傳感器 /
- 非接觸 /
- 靜電測量 /
- 靜電儀
Abstract: The vibrating or rotating parts of the traditional non-contact voltmeters are exposed, thus they can not be used in high-risk areas, and can hardly measure moving bodies. To solve the above problems, this paper develops new non-contact voltmeters based on MEMS electric field sensors. A new detecting electrode, which connects to the sensor chip, is brought out and effectively enhances the sensitivity. Eleven electrodes are placed on a door frame, and measure the charge distribution of head, shoulder, arm, hand, leg and foot at the same time. By means of a metal human body model, a new calibration method for application is proposed. The voltmeter built in this paper is accurately calibrated. The voltmeters have significant advantages, such as no exposed moving components, safety, high environmental adaptability, and therefore can be used under high dust concentration, high concentration of flammable gas and other harsh environments. Test results show that the measurement range is -30~30 kV, the volt resolution is better than 50 V, and the uncertainty is better than 3%. -
劉浩, 劉尚合, 蘇銀濤, 等. 基于網(wǎng)格狀 ITO 薄膜的航天器太陽電池陣靜電放電防護(hù)[J]. 航空學(xué)報, 2015, 36(10): 3494-3500. doi: 10.7527/S1000-6893.2014.0320. LIU Hao, LIU Shanghe, SU Yintao, et al. Electrostatic discharge protection of spacecraft solar cell array based on meshed ITO film[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3494-3500. doi: 10.7527/S1000-6893.2014.0320. 劉富品, 張皓東. 航天產(chǎn)品靜電防護(hù)的過程控制[J]. 質(zhì)量與可靠性, 2014(3): 49-52. LIU Fupin and ZHANG Haodong. Process control on aerospace product electrostatic protection[J]. Quality and Reliability, 2014(3): 49-52. MEHRANI Poupak, SALAMA Fawzi, and SONG Di. Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J]. Poweder Technology, 2017. doi: 10.1016/j.pwotec.2017.01. 031. 李義鵬, 孟鶴, 孫立富, 等. 大型車輛加油過程靜電危險因素的分析及試驗研究[J]. 石油庫與加油站, 2015, 24(1): 15-17. doi: 10.3969/j.issn.1008-2263.2015.01.005. LI Yipeng, MENG He, SUN Lifu, et al. Study on electrostatic charge risks of large vehicles refuelling process[J]. Oil Depot and Gas Station, 2015, 24(1): 15-17. doi: 10.3969/j.issn.1008- 2263.2015.01.005. 包磊, 曹志忻. 船舶輸油管路中的靜電分析[J]. 上海船舶運輸科學(xué)研究所學(xué)報, 2015, 38(3): 40-42. doi: 10.3969/j.issn. 1674-5949.2015.03.009. BAO Lei and CAO Zhixin. Static electricity in ship oil piping[J]. Journal of Shanghai Scientific Research Institute of Shipping, 2015, 38(3): 40-42. doi: 10.3969/j.issn. 1674-5949. 2015.03.009. 周本謀, 劉尚合, 范寶春. 粉體工業(yè)典型靜電放電輻射場測試研究[J]. 測試技術(shù)學(xué)報, 2003, 17(4): 302-305. doi: 10.3969/ j.issn.1671-7449.2003.04.005. ZHOU Benmou, LIU Shanghe, and FAN Baochun. Investigation of the characteristics of radiate field from the ESD according to powder industrial production[J]. Journal of Test and Measurement Technology, 2003, 17(4): 302-305. doi: 10.3969/j.issn.1671-7449.2003.04.005. MACGORMAN D R, BIGGERSTAFF M I, WAUGH S, et al. Coordinated lightning, balloon-borne electric field, and radar observations of triggered lightning flashes in North Florida[J]. Geophysical Research Letters, 2015, 42(13): 5635-5643. doi: 10.1002/2015GL064203. ARSHAD S N M, KADIR A, ABIDIN M Z, et al. Review and evaluation of characterization first return stroke in the measured lightning electric fields on malaysia data[C]. Applied Mechanics and Materials, 2015, 793: 44-48. doi: 10.4028/www.scientific.net/AMM.793.44. TANT P, BOLSENS B, SELS T, et al. Design and application of a field mill as a high-voltage DC meter[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1459-1464. doi: 10.1109/TIM.2007.900157. AGARWAL A and BHATTACHARYA S. An approach to study the atmospheric electric field using EFM system[C]. Futuristic Trends in Engineering, Science, Humanities, and Technology, Madhya Pradesh, India, 2016: 153-156. NORAS M A and PANDEY A. Surface charge density measurements[J]. IEEE Industry Applications Magazine, 2010, 16(4): 41-47. doi: 10.1109/MIAS.2010.936971. FATIHOU A, DASCALESCU L, ZOUZOU N, et al. Measurement of surface potential of non-uniformly charged insulating materials using a non-contact electrostatic voltmeter[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2377-2384. doi: 10.1109/TDEI.2016. 7556516. YANG Pengfei, CHEN Bo, WEN Xiaolong, et al. A novel MEMS chip-based atmospheric electric field sensor for lightning hazard warning applications[C]. IEEE Sensors, Busan, 2015: 978-981. doi: 10.1109/ICSENS.2015.7370268. CHEN T, SHAFAI C, RAJAPAKSE A, et al. Micromachined ac/dc electric field sensor with modulated sensitivity[J]. Sensors and Actuators A: Physical, 2016, 245: 76-84. doi: 10.1016/j.sna.2016.04.054. YANG Pengfei, PENG Chunrong, ZHANG Haiyan, et al. A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes[C]. 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers11), Beijing, China, 2011: 1034-1037. doi: 10.1109/TRANSDUCERS.2011.5969165. -
計量
- 文章訪問數(shù): 1761
- HTML全文瀏覽量: 207
- PDF下載量: 384
- 被引次數(shù): 0