基于結(jié)構(gòu)稀疏性的單次曝光相位成像算法
doi: 10.11999/JEIT161171
基金項(xiàng)目:
國家自然科學(xué)基金(61471313),河北省自然科學(xué)基金(F2014203076)
Single-shot Phase Imaging Algorithm Based on Structural Sparsity
Funds:
The National Natural Science Foundation of China (61471313), The Natural Science Foundation of Hebei Province (F2014203076)
-
摘要: 相位成像的關(guān)鍵是相位恢復(fù)。由于相位信息的丟失,相位恢復(fù)通常是不適定的,如何利用合適的先驗(yàn)信息進(jìn)行相位恢復(fù)是一個重要問題。該文在SPICA成像系統(tǒng)下提出了基于結(jié)構(gòu)稀疏性的單次曝光相位成像算法。該算法利用圖像全變差的重疊組結(jié)構(gòu)稀疏性,將重疊的結(jié)構(gòu)稀疏正則項(xiàng)以卷積形式表示,使求解過程更簡單,并利用最速下降法求解相應(yīng)的優(yōu)化問題。實(shí)驗(yàn)結(jié)果表明,該算法在有噪聲的情況下能夠有效地實(shí)現(xiàn)對復(fù)圖像的重構(gòu)。
-
關(guān)鍵詞:
- 相位恢復(fù) /
- 結(jié)構(gòu)稀疏 /
- 全變差 /
- 最速下降法
Abstract: The key issue in phase imaging is phase retrieval. Due to the loss of the phase information, the phase retrieval problem is usually ill-posed. How to realize the phase retrieval by using appropriate prior information is an important problem. In this work, based on single-shot phase imaging with a coded aperture, a single-shot phase imaging algorithm, which uses the structural sparsity, is proposed. The proposed algorithm exploits the overlapping structural sparsity of the total variation, and represents the structural sparsity in the form of convolution, making the problem easy to solve. Moreover, the steepest descent method is utilized to solve the corresponding optimization problem. The experiment results show that the complex amplitude can be reconstructed from noisy diffraction pattern using the proposed algorithm.-
Key words:
- Phase retrieval /
- Structural sparsity /
- Total variation /
- The steepest descent method
-
TIAN L and WALLER L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403. doi: 10.1364/OE.23. 011394. SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 88-109. doi: 10.1109/MSP.2014.2352673. MAJI S K, YAHIA H M, and FUSCO T. A multifractal-based wavefront phase estimation technique for ground-based astronomical observations[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(3): 1705-1715. doi: 10.1109/TGRS.2015.2487546. SCHWESER F, DEISTUNG A, and REICHENBACH J R. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)[J]. Zeitschrift Fr Medizinische Physik, 2015, 26(1): 6-34.doi: 10.1016/ j.zemedi.2015.10.002. DESSE J M, PICART P, and OLCHEWSKY F. Quantitative phase imaging in flows with high resolution holographic diffraction grating[J]. Optics Express, 2015, 23(18): 23726-23737. doi: 10.1364/OE.24.014322. GERCHBERG R and SAXON W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. International Journal for Light and Electron Optics, 1972, 35(2): 237-250. 楊國楨, 顧本源. 光學(xué)系統(tǒng)中振幅和相位的恢復(fù)問題[J]. 物理學(xué)報(bào), 1981, 30(3): 410-413. YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413. FIENUP J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/ A0.21.002758. RODRIGUEZ J A, XU R, Chen C C, et al. Oversampling smoothness (OSS): An effective algorithm for phase retrieval of noisy diffraction intensities[J]. Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/S0021889813002471. CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2): 225-251. doi: 10.1137/110848074. 程鴻, 章權(quán)兵, 韋穗. 基于整體變分的相位恢復(fù)[J]. 中國圖象圖形學(xué)報(bào), 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007. CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007. LOOCK S and PLONKA G. Phase retrieval for Fresnel measurements using a shearlet sparsity constraint[J]. Inverse Problems, 2014, 30(5): 1-13. doi: 10.1088/0266-5611/30/5/ 055005. 楊振亞, 鄭楚君. 基于壓縮傳感的純相位物體相位恢復(fù)[J]. 物理學(xué)報(bào), 2013, 62(10): 104203.doi: 10.7498/aps.62.104203. YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203. BATES R H T. Uniqueness of solutions to two-dimensional Fourier phase problems for localized and positive images[J]. Computer Vision Graphics Image Processing, 1984, 25(2): 205-217. HORISAKI R, OGURA Y, AINO M, et al. Single-shot phase imaging with a coded aperture[J]. Optics Letters, 2014, 39(22): 6466-6469. doi: 10.1364/OL.39.006466. BIOUCASDIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/ thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/ TIP.2007.909319. EGAMI R, HORISAKI R, TIAN L, et al. Relaxation of mask design for single-shot phase imaging with a coded aperture[J]. Applied Optics, 2016, 55(8): 1830-1837. doi: 10.1364/AO. 55.001830. SHERVASHIDZE N and BACH F. Learning the Structure for Structured Sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902. doi: 10.1109/TSP.2015. 2446432. LIU J, HUANG T Z, SELESNICK I W, et al. Image restoration using total variation with overlapping group sparsity[J]. Information Sciences, 2015, 295: 232-246. doi: 10.1016/j.ins.2014.10.041. CHEN P Y and SELESNICK I W. Group-sparse signal denoising: Non-convex regularization, convex optimization[J]. IEEE Transactions on Signal Processing, 2013, 62(13): 3464-3478. doi: 10.1109/TSP.2014.2329274. HUANG J, HUANG X, and METAXAS D. Learning with dynamic group sparsity[C]. IEEE International Conference on Computer Vision, Japan, 2009: 64-71. SELESNICK I W and CHEN P Y. Total variation denoising with overlapping group sparsity[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013: 5696-5700. CHEN P Y and SELESNICK I W. Translation-invariant shrinkage/thresholding of group sparse signals[J]. Signal Processing, 2014, 94(1): 476-489. doi: 10.1016/j.sigpro. 2013.06.011 Gray R M. Toeplitz and circulant matrices: A review[J]. Foundations and Trends in Communications and Information Theory, 2006, 2(3): 155-239. doi: 10.1561/0100000006. CANDES E J, LI X, and SOLTANOLKOTABI M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2014, 61(4): 1985-2007. doi: 10.1109/TIT.2015.2399924. -
計(jì)量
- 文章訪問數(shù): 1258
- HTML全文瀏覽量: 128
- PDF下載量: 783
- 被引次數(shù): 0