基于模糊核聚類和支持向量機(jī)的魯棒協(xié)同推薦算法
doi: 10.11999/JEIT161154
基金項(xiàng)目:
國家自然科學(xué)基金(61379116),河北省自然科學(xué)基金(F2015203046),遼寧省教育廳科學(xué)研究項(xiàng)目(L2015240)
Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine
Funds:
The National Natural Science Foundation of China (61379116), The Natural Science Foundation of Hebei Province (F2015203046), The Scientific Research Foundation of Liaoning Provincial Education Department (L2015240)
-
摘要: 該文針對(duì)現(xiàn)有推薦算法在面對(duì)托攻擊時(shí)魯棒性不高的問題,提出一種基于模糊核聚類和支持向量機(jī)的魯棒推薦算法。首先,根據(jù)攻擊概貌間高度相關(guān)的特性,利用模糊核聚類方法在高維特征空間對(duì)用戶概貌進(jìn)行聚類,實(shí)現(xiàn)攻擊概貌的第1階段檢測(cè)。然后,利用支持向量機(jī)分類器對(duì)含有攻擊概貌的聚類進(jìn)行分類,實(shí)現(xiàn)攻擊概貌的第2階段檢測(cè)。最后,基于攻擊概貌檢測(cè)結(jié)果,通過構(gòu)造指示函數(shù)排除攻擊概貌在推薦過程中產(chǎn)生的影響,并引入矩陣分解技術(shù)設(shè)計(jì)相應(yīng)的魯棒協(xié)同推薦算法。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有的基于矩陣分解模型的推薦算法相比,所提算法不但具有很好的魯棒性,而且準(zhǔn)確性也有提高。Abstract: The existing collaborative recommendation algorithms have low robustness against shilling attacks. To solve this problem, a robust collaborative recommendation algorithm is proposed based on Fuzzy Kernel Clustering (FKC) and Support Vector Machine (SVM). Firstly, according to the high correlation characteristic between attack profiles, the FKC method is used to cluster user profiles in high-dimensional feature space, which is the first stage of the attack profile detection. Then, the SVM classifier is used to classify the cluster including attack profiles, which is the second stage of the attack profile detection. Finally, an indicator function is constructed based on the attack detection results to reduce the influence of attack profiles on the recommendation, and it is combined with the matrix factorization technology to devise the corresponding robust collaborative recommendation algorithm. Experimental results show that the proposed algorithm outperforms the existing methods in terms of both recommendation accuracy and robustness.
-
孟祥武, 劉樹棟, 張玉潔, 等. 社會(huì)化推薦系統(tǒng)研究[J]. 軟件學(xué)報(bào), 2015, 26(6): 1356-1372. MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommendation systems[J]. Journal of Software, 2015, 26(6): 1356-1372. CHEN L, CHEN G L, WANG F. Recommender systems based on user reviews: The state of the art[J]. User Modeling and User-Adapted Interaction, 2015, 25(2): 99-154. doi: 10.1007/s11257-015-9155-5. GUNES I, KALELI C, BILGE A, et al. Shilling attacks against recommender systems: A comprehensive survey[J]. Artificial Intelligence Review, 2014, 42(4): 767-799. doi: 10.1007/s10462-012-9364-9. O'MAHONY M, HURLEY N, KUSHMERICK N, et al. Collaborative recommendation: A robustness analysis[J]. ACM Transactions on Internet Technology, 2004, 4(4): 344-377. doi: 10.1145/1031114.1031116. MEHTA B and NEJDL W. Attack resistant collaborative filtering[C]. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, 2008: 75-82. LEE J and ZHU D. Shilling attack detection-a new approach for a trustworthy recommender system[J]. Informs Journal on Computing, 2012, 24(1): 117-131. doi: 10.1287/ijoc.1100. 0440. BHAUMIK R, MOBASHER B, and BURKE R. A clustering approach to unsupervised attack detection in collaborative recommender systems[C]. Proceedings of the 7th International Conference on Data Mining, IEEE Computer Society, Washington: 2011: 181-187. 李聰, 駱志剛, 石金龍. 一種探測(cè)推薦系統(tǒng)托攻擊的無監(jiān)督算法[J]. 自動(dòng)化學(xué)報(bào), 2011, 37(2): 160-167. LI Cong, LUO Zhigang, and SHI Jinlong. An unsupervised algorithm for detecting shilling attacks on recommender systems[J]. Acta Automatica Sinica, 2011, 37(2): 160-167. WILLIAMS C A, MOBASHER B, BURKE R, et al. Detecting profile injection attacks in collaborative filtering: A classification-based approach[C]. Proceedings of the 8th Knowledge Discovery on the Web International Conference on Advances in Web Mining and Web Usage Analysis, Berlin, 2007: 167-186. WILLIAMS C, MOBASHER B, and BURKE R. Defending recommender systems: Detection of profile injection attacks [J]. Service Oriented Computing and Applications, 2007, 1(3): 157-170. doi: 10.1007/s11761-007-0013-0. HE F, WANG X, and LIU B. Attack detection by rough set theory in recommendation system[C]. 2010 IEEE International Conference on Granular Computing, Washington, 2010: 692-695. 伍之昂, 莊毅, 王有權(quán), 等. 基于特征選擇的推薦系統(tǒng)托攻擊檢測(cè)算法[J]. 電子學(xué)報(bào), 2012, 40(8): 1687-1693. doi: 10.3969/ j.issn.0372-2112.2012.08.031. WU Zhiang, ZHUANG Yi, WANG Youquan, et al. Shilling attack detection based on feature selection for recommendation systems[J]. Acta Electronica Sinica, 2012, 40(8): 1687-1693. doi: 10.3969/j.issn.0372-2112.2012.08.031. 李文濤, 高旻, 李華, 等. 一種基于流行度分類特征的托攻擊檢測(cè)算法. 自動(dòng)化學(xué)報(bào), 2015, 41(9): 1563-1575. LI Wentao, GAO Min, LI Hua, et al. An shilling attack detection algorithm based on popularity degree features[J]. Acta Automatica Sinica, 2015, 41(9): 1563-1575. doi: 10.16383/j.aas.2015.c150040. ZHANG F and ZHOU Q. Ensemble detection model for profile injection attacks in collaborative recommender systems based on BP neural network[J]. Iet Information Security, 2015, 9(1): 24-31. doi: 10.1049/iet-ifs.2013.0145. SANDVIG J J, MOBASHER B, and BURKE R. A survey of collaborative recommendation and the robustness of model-based algorithms[J]. Bulletin of the Technical Committee on Data Engineering, 2008, 31(2): 3-13. SANDVIG J J, MOBASHER B, and BURKE R. Robustness of collaborative recommendation based on association rule mining[C]. Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, 2007: 105112. MEHTA B, HOFMANN T, and NEJDL W. Robust collaborative filtering[C]. ACM Conference on Recommender Systems, Recsys, Minneapolis, MN, USA, 2007: 49-56. CHENG Z and HURLEY N. Robust collaborative recommendation by least trimmed squares matrix factorization[C]. Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 2010: 105-112. YI Huawei and ZHANG Fuzhi. A robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator[J]. China Communications, 2014, 11(9): 119-130. doi: 10.1109/CC.2014.6969776. 李聰, 駱志剛. 用于魯棒協(xié)同推薦的元信息增強(qiáng)變分貝葉斯矩陣分解模型[J]. 自動(dòng)化學(xué)報(bào), 2011, 37(9): 1067-1076. LI Cong and LUO Zhigang. A metadata-enhanced variational Bayesian matrix factorization model for robust collaborative recommendation[J]. Acta Automatica Sinica, 2011, 37(9): 1067-1076. 張燕平, 張順, 錢付蘭, 等. 基于用戶聲譽(yù)的魯棒協(xié)同推薦算法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(5): 1004-1012. doi: 10.16383/j. aas.2015.c140073. ZHANG Yanping, ZHANG Shun, QIAN Fulan, et al. Robust collaborative recommendation algorithm based on users reputation[J]. Acta Automatica Sinica, 2015, 41(5): 1004-1012. doi: 10.16383/j.aas.2015.c140073. 李改, 李磊. 魯棒的單類協(xié)同排序算法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231. LI Gai and LI Lei. Robust ranking algorithms for one-class collaborative filtering[J]. Acta Automatica Sinica, 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231. YI H and ZHANG F. Robust recommendation algorithm based on the identification of suspicious users and matrix factorization[J]. Journal of Information and Computational Science, 2014, 11(13): 4769-4777. doi: 10.12733/ JICS20104307. RICCI F, SHAPIRA B, and ROKACH L. Recommender Systems Handbook[M]. New York, Springer US, 2015: 961-995. doi: 10.1007/978-1-4899-7637-6_28. DESHPANDE M and KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177. -
計(jì)量
- 文章訪問數(shù): 1348
- HTML全文瀏覽量: 156
- PDF下載量: 394
- 被引次數(shù): 0