一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于模糊核聚類和支持向量機(jī)的魯棒協(xié)同推薦算法

伊華偉 張付志 巢進(jìn)波

伊華偉, 張付志, 巢進(jìn)波. 基于模糊核聚類和支持向量機(jī)的魯棒協(xié)同推薦算法[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
引用本文: 伊華偉, 張付志, 巢進(jìn)波. 基于模糊核聚類和支持向量機(jī)的魯棒協(xié)同推薦算法[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
YI Huawei, ZHANG Fuzhi, Chao Jinbo. Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
Citation: YI Huawei, ZHANG Fuzhi, Chao Jinbo. Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154

基于模糊核聚類和支持向量機(jī)的魯棒協(xié)同推薦算法

doi: 10.11999/JEIT161154
基金項(xiàng)目: 

國家自然科學(xué)基金(61379116),河北省自然科學(xué)基金(F2015203046),遼寧省教育廳科學(xué)研究項(xiàng)目(L2015240)

Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine

Funds: 

The National Natural Science Foundation of China (61379116), The Natural Science Foundation of Hebei Province (F2015203046), The Scientific Research Foundation of Liaoning Provincial Education Department (L2015240)

  • 摘要: 該文針對(duì)現(xiàn)有推薦算法在面對(duì)托攻擊時(shí)魯棒性不高的問題,提出一種基于模糊核聚類和支持向量機(jī)的魯棒推薦算法。首先,根據(jù)攻擊概貌間高度相關(guān)的特性,利用模糊核聚類方法在高維特征空間對(duì)用戶概貌進(jìn)行聚類,實(shí)現(xiàn)攻擊概貌的第1階段檢測(cè)。然后,利用支持向量機(jī)分類器對(duì)含有攻擊概貌的聚類進(jìn)行分類,實(shí)現(xiàn)攻擊概貌的第2階段檢測(cè)。最后,基于攻擊概貌檢測(cè)結(jié)果,通過構(gòu)造指示函數(shù)排除攻擊概貌在推薦過程中產(chǎn)生的影響,并引入矩陣分解技術(shù)設(shè)計(jì)相應(yīng)的魯棒協(xié)同推薦算法。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有的基于矩陣分解模型的推薦算法相比,所提算法不但具有很好的魯棒性,而且準(zhǔn)確性也有提高。
  • 孟祥武, 劉樹棟, 張玉潔, 等. 社會(huì)化推薦系統(tǒng)研究[J]. 軟件學(xué)報(bào), 2015, 26(6): 1356-1372.
    MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommendation systems[J]. Journal of Software, 2015, 26(6): 1356-1372.
    CHEN L, CHEN G L, WANG F. Recommender systems based on user reviews: The state of the art[J]. User Modeling and User-Adapted Interaction, 2015, 25(2): 99-154. doi: 10.1007/s11257-015-9155-5.
    GUNES I, KALELI C, BILGE A, et al. Shilling attacks against recommender systems: A comprehensive survey[J]. Artificial Intelligence Review, 2014, 42(4): 767-799. doi: 10.1007/s10462-012-9364-9.
    O'MAHONY M, HURLEY N, KUSHMERICK N, et al. Collaborative recommendation: A robustness analysis[J]. ACM Transactions on Internet Technology, 2004, 4(4): 344-377. doi: 10.1145/1031114.1031116.
    MEHTA B and NEJDL W. Attack resistant collaborative filtering[C]. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, 2008: 75-82.
    LEE J and ZHU D. Shilling attack detection-a new approach for a trustworthy recommender system[J]. Informs Journal on Computing, 2012, 24(1): 117-131. doi: 10.1287/ijoc.1100. 0440.
    BHAUMIK R, MOBASHER B, and BURKE R. A clustering approach to unsupervised attack detection in collaborative recommender systems[C]. Proceedings of the 7th International Conference on Data Mining, IEEE Computer Society, Washington: 2011: 181-187.
    李聰, 駱志剛, 石金龍. 一種探測(cè)推薦系統(tǒng)托攻擊的無監(jiān)督算法[J]. 自動(dòng)化學(xué)報(bào), 2011, 37(2): 160-167.
    LI Cong, LUO Zhigang, and SHI Jinlong. An unsupervised algorithm for detecting shilling attacks on recommender systems[J]. Acta Automatica Sinica, 2011, 37(2): 160-167.
    WILLIAMS C A, MOBASHER B, BURKE R, et al. Detecting profile injection attacks in collaborative filtering: A classification-based approach[C]. Proceedings of the 8th Knowledge Discovery on the Web International Conference on Advances in Web Mining and Web Usage Analysis, Berlin, 2007: 167-186.
    WILLIAMS C, MOBASHER B, and BURKE R. Defending recommender systems: Detection of profile injection attacks [J]. Service Oriented Computing and Applications, 2007, 1(3): 157-170. doi: 10.1007/s11761-007-0013-0.
    HE F, WANG X, and LIU B. Attack detection by rough set theory in recommendation system[C]. 2010 IEEE International Conference on Granular Computing, Washington, 2010: 692-695.
    伍之昂, 莊毅, 王有權(quán), 等. 基于特征選擇的推薦系統(tǒng)托攻擊檢測(cè)算法[J]. 電子學(xué)報(bào), 2012, 40(8): 1687-1693. doi: 10.3969/ j.issn.0372-2112.2012.08.031.
    WU Zhiang, ZHUANG Yi, WANG Youquan, et al. Shilling attack detection based on feature selection for recommendation systems[J]. Acta Electronica Sinica, 2012, 40(8): 1687-1693. doi: 10.3969/j.issn.0372-2112.2012.08.031.
    李文濤, 高旻, 李華, 等. 一種基于流行度分類特征的托攻擊檢測(cè)算法. 自動(dòng)化學(xué)報(bào), 2015, 41(9): 1563-1575.
    LI Wentao, GAO Min, LI Hua, et al. An shilling attack detection algorithm based on popularity degree features[J]. Acta Automatica Sinica, 2015, 41(9): 1563-1575. doi: 10.16383/j.aas.2015.c150040.
    ZHANG F and ZHOU Q. Ensemble detection model for profile injection attacks in collaborative recommender systems based on BP neural network[J]. Iet Information Security, 2015, 9(1): 24-31. doi: 10.1049/iet-ifs.2013.0145.
    SANDVIG J J, MOBASHER B, and BURKE R. A survey of collaborative recommendation and the robustness of model-based algorithms[J]. Bulletin of the Technical Committee on Data Engineering, 2008, 31(2): 3-13.
    SANDVIG J J, MOBASHER B, and BURKE R. Robustness of collaborative recommendation based on association rule mining[C]. Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, 2007: 105112.
    MEHTA B, HOFMANN T, and NEJDL W. Robust collaborative filtering[C]. ACM Conference on Recommender Systems, Recsys, Minneapolis, MN, USA, 2007: 49-56.
    CHENG Z and HURLEY N. Robust collaborative recommendation by least trimmed squares matrix factorization[C]. Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 2010: 105-112.
    YI Huawei and ZHANG Fuzhi. A robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator[J]. China Communications, 2014, 11(9): 119-130. doi: 10.1109/CC.2014.6969776.
    李聰, 駱志剛. 用于魯棒協(xié)同推薦的元信息增強(qiáng)變分貝葉斯矩陣分解模型[J]. 自動(dòng)化學(xué)報(bào), 2011, 37(9): 1067-1076.
    LI Cong and LUO Zhigang. A metadata-enhanced variational Bayesian matrix factorization model for robust collaborative recommendation[J]. Acta Automatica Sinica, 2011, 37(9): 1067-1076.
    張燕平, 張順, 錢付蘭, 等. 基于用戶聲譽(yù)的魯棒協(xié)同推薦算法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(5): 1004-1012. doi: 10.16383/j. aas.2015.c140073.
    ZHANG Yanping, ZHANG Shun, QIAN Fulan, et al. Robust collaborative recommendation algorithm based on users reputation[J]. Acta Automatica Sinica, 2015, 41(5): 1004-1012. doi: 10.16383/j.aas.2015.c140073.
    李改, 李磊. 魯棒的單類協(xié)同排序算法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231.
    LI Gai and LI Lei. Robust ranking algorithms for one-class collaborative filtering[J]. Acta Automatica Sinica, 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231.
    YI H and ZHANG F. Robust recommendation algorithm based on the identification of suspicious users and matrix factorization[J]. Journal of Information and Computational Science, 2014, 11(13): 4769-4777. doi: 10.12733/ JICS20104307.
    RICCI F, SHAPIRA B, and ROKACH L. Recommender Systems Handbook[M]. New York, Springer US, 2015: 961-995. doi: 10.1007/978-1-4899-7637-6_28.
    DESHPANDE M and KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1348
  • HTML全文瀏覽量:  156
  • PDF下載量:  394
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-27
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-08-19

目錄

    /

    返回文章
    返回