一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種視頻壓縮感知中兩級多假設(shè)重構(gòu)及實現(xiàn)方法

歐偉楓 楊春玲 戴超

歐偉楓, 楊春玲, 戴超. 一種視頻壓縮感知中兩級多假設(shè)重構(gòu)及實現(xiàn)方法[J]. 電子與信息學(xué)報, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
引用本文: 歐偉楓, 楊春玲, 戴超. 一種視頻壓縮感知中兩級多假設(shè)重構(gòu)及實現(xiàn)方法[J]. 電子與信息學(xué)報, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
Citation: OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142

一種視頻壓縮感知中兩級多假設(shè)重構(gòu)及實現(xiàn)方法

doi: 10.11999/JEIT161142
基金項目: 

國家自然科學(xué)基金(61471173),廣東省自然科學(xué)基金(2016A030313455)

A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing

Funds: 

The National Natural Science Foundation of China (61471173), The Natural Science Foundation of Guangdong Province (2016A030313455)

  • 摘要: 視頻壓縮感知在采集端資源受限的視頻采集應(yīng)用場景有重要研究意義。重構(gòu)算法是視頻壓縮感知的關(guān)鍵技術(shù),基于多假設(shè)預(yù)測的預(yù)測-殘差重構(gòu)框架具有良好的重構(gòu)性能。但現(xiàn)有的多假設(shè)預(yù)測算法大多在觀測域提出,這種預(yù)測方法由于受到不重疊分塊的限制,造成了預(yù)測幀的塊效應(yīng),降低了重構(gòu)質(zhì)量。針對此問題,該文將像素域多假設(shè)預(yù)測與觀測域多假設(shè)預(yù)測相結(jié)合,提出兩級多假設(shè)重構(gòu)思想(2sMHR),并設(shè)計了基于圖像組(Gw_2sMHR)和基于幀(Fw_2sMHR)的兩種實現(xiàn)方法。仿真結(jié)果表明,所提2sMHR重構(gòu)算法能有效減小塊效應(yīng),相比于現(xiàn)有最好的多假設(shè)預(yù)測算法具有更低的時間復(fù)雜度和更高的視頻重構(gòu)質(zhì)量。
  • LIU Y and PADOS D A. Compressed-sensed-domain L1-PCA video surveillance[J]. IEEE Transactions on Multimedia, 2016, 18(3): 351-363. doi: 10.1109/TMM.2016. 2514848.
    GUO J, SONG B, and DU X. Significance evaluation of video data over media cloud based on compressed sensing[J]. IEEE Transactions on Multimedia, 2016, 18(7): 1297-1304. doi: 10.1109/TMM.2016.2564100.
    REHMAN A U, SHAH G A, and TAHIR M. Compressed sensing based adaptive video coding for resource constrained devices[C]. IEEE International Wireless Communications and Mobile Computing Conference, Paphos, Cyprus, 2016: 170-175.
    WANG J, GUPTA M, and SANKARANARAYANAN A C. LiSensA scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, Houston, TX, 2015: 1-9.
    LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21(9): 10526-10545. doi: 10.1364/OE.21.010526.
    HOSSEINI M S and PLATANIOTIS K N. High-accuracy total variation with application to compressed video sensing [J]. IEEE Transactions on Image Processing, 2014, 23(9): 3869-3884. doi: 10.1109/TIP.2014.2332755.
    YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878. doi: 10.1109/TIP.2014.2344294.
    常侃, 覃團發(fā), 唐振華. 基于聯(lián)合總變分最小化的視頻壓縮感知重建算法[J]. 電子學(xué)報, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    CHANG K, QIN T F, and TANG Z H. Reconstruction algorithm for compressed sensing of video based on joint total variation minimization[J]. Acta Electronica Sinica, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    ZHAO C, MA S W, ZHANG J, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, to be published. doi: 10.1109/TCSVT. 2016.2527181.
    MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. IEEE Data Compression Conference, Snowbird, 2011: 183-192.
    NARAYANAN S and MAKUR A. Compressive coded video compression using measurement domain motion estimation [C]. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, 2014: 1-6.
    GUO J, SONG B, LIU H X, et al. Motion estimation in measurement domain for compressed video sensing[C]. IEEE International Conference on Computer and Information Technology, Xi,an, 2014: 441-445.
    DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, Cairo, 2009: 1393-1396.
    TRAMEL E W and FOWLER J E. Video compressed sensing with multihypothesis[C]. IEEE Data Compression
    Conference, Snowbird, 2011: 193-202.
    AZGHANI M, KARIMI M, and MARVASTI F. Multihypothesis compressed video sensing technique[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(4): 627-635. doi: 10.1109/TCSVT.2015. 2418586.
    CHEN J, CHEN Y, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools Applications, 2013, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y.
    KUO Y H, WU K, and CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045- 015-0337-4.
    GAN L. Block compressed sensing of natural images[C]. IEEE International Conference on Digital Signal Processing, Cardiff, 2007: 403-406.
    OU W F, YANG C L, LI W H, et al. A two-stage multi- hypothesis reconstruction scheme in compressed video sensing[C]. IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 2494-2498.
    楊春玲, 歐偉楓. CVS中基于多參考幀的最優(yōu)多假設(shè)預(yù)測算法[J]. 華南理工大學(xué)學(xué)報(自然科學(xué)版), 2016, 44(1): 1-8. doi: 10.3969/j.issn.1000-565X.2016.01.001.
    YANG C L and OU W F. Multi-reference frames-based optimal multi-hypothesis prediction in compressed video sensing[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 1-8. doi: 10.3969/ j.issn.1000-565X.2016.01.001.
    MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. IEEE International Conference on Image Processing, Cairo, 2009: 3021-3024.
  • 加載中
計量
  • 文章訪問數(shù):  1300
  • HTML全文瀏覽量:  228
  • PDF下載量:  301
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-26
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-07-19

目錄

    /

    返回文章
    返回