一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于共享特征相對(duì)屬性的零樣本圖像分類

喬雪 彭晨 段賀 張鈺堯

喬雪, 彭晨, 段賀, 張鈺堯. 基于共享特征相對(duì)屬性的零樣本圖像分類[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133
引用本文: 喬雪, 彭晨, 段賀, 張鈺堯. 基于共享特征相對(duì)屬性的零樣本圖像分類[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133
QIAO Xue, PENG Chen, DUAN He, ZHANG Yuyao. Shared Features Based Relative Attributes forZero-shot Image Classification[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133
Citation: QIAO Xue, PENG Chen, DUAN He, ZHANG Yuyao. Shared Features Based Relative Attributes forZero-shot Image Classification[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133

基于共享特征相對(duì)屬性的零樣本圖像分類

doi: 10.11999/JEIT161133
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(41501485)

Shared Features Based Relative Attributes forZero-shot Image Classification

Funds: 

The National Natural Science Foundation of China (41501485)

  • 摘要: 在利用相對(duì)屬性學(xué)習(xí)實(shí)現(xiàn)零樣本圖像分類中,現(xiàn)有的方法并沒有考慮屬性與類別之間的關(guān)系,為此該文提出一種基于共享特征相對(duì)屬性的零樣本圖像分類方法。該方法采用多任務(wù)學(xué)習(xí)的思想來共同學(xué)習(xí)類別分類器和屬性分類器,獲得一個(gè)低維的共享特征子空間,挖掘?qū)傩耘c類別之間的關(guān)系。同時(shí),利用共享特征來學(xué)習(xí)屬性排序函數(shù),得到基于共享特征的相對(duì)屬性模型,解決了相對(duì)屬性學(xué)習(xí)過程中丟失屬性與類別關(guān)系的問題。另外,將基于共享特征的相對(duì)屬性模型用于零樣本圖像分類中,有效提高了零樣本圖像分類的識(shí)別率。實(shí)驗(yàn)數(shù)據(jù)集上的結(jié)果表明,該方法具有較高的相對(duì)屬性學(xué)習(xí)性能和零樣本圖像分類精度。
  • GAN C, YANG T, and GONG B. Learning attributes equals multi-source domain generalization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 87-97.
    QIN Jie, WANG Yunhong, LIU Li, et al. Beyond semantic attributes: Discrete latent attributes learning for zero-shot recognition[J]. IEEE Signal Processing Letters, 2016, 23(11): 1667-1671. doi: 10.1109/LSP.2016.2612247.
    PARIKH D and GRAUMAN K. Relative attributes[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 503-510.
    YANG X, ZHANG T, XU C, et al. Deep relative attributes[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1832-1842. doi: 10.1109/TMM.2016.2582379.
    CHEN L, ZHANG Q, and LI B X. Predicting multiple attributes via relative multi-task learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1027-1034.
    和華, 杜蘭, 徐丹蕾, 等. 基于多任務(wù)復(fù)數(shù)因子分析模型的雷達(dá)高分辨距離像識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
    HE Hua, DU Lan, XU Danlei, et al. Radar HRRP target recognition method based on multi-task learning and complex factor analysis[J]. Journal of Electronics Information Technology, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
    HWANG S J, SHA F, and GRAUMAN K. Sharing features between objects and their attributes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011: 1761-1768.
    LAMPERT C H, NICKISCH H, and HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465. doi: 10.1109/TPAMI.2013.140.
    ARGYRIOU A, EVGENIOU T, and PONTIL M. Convex multi-task feature learning[J]. Machine Learning, 2008, 73(3): 243-272. doi: 10.1007/s10994-007-5040-8.
    SHI C, RUAN Q, AN G, et al. Hessian semi-supervised sparse feature selection based on L2,1/2-matrix norm[J]. IEEE Transactions on Multimedia, 2015, 17(1): 16-28. doi:10.1109/ TMM.2014.2375792.
    李秀友, 薛永華, 董云龍, 等. 基于迭代凸優(yōu)化的恒模波形合成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2171-2176. doi: 10.11999/JEIT141593.
    LI Xiuyou, XUE Yonghua, DONG Yunlong, et al. Constant modulus waveform synthesis based on iterative convex optimization[J]. Journal of Electronics Information Technology, 2015, 37(9): 2171-2176. doi: 10.11999/ JEIT141593.
    YANG Z M, WU H J, LI C N, et al. Least squares recursive projection twin support vector machine for multi-class classification[J]. International Journal of Machine Learning Cybernetics, 2016, 7(3): 1-16. doi: 10.1007/s13042-015- 0394-x.
    及歆榮, 侯翠琴, 侯義斌. 無線傳感器網(wǎng)絡(luò)下線性支持向量機(jī)分布式協(xié)同訓(xùn)練方法研究[J]. 電子與信息學(xué)報(bào), 2015(3): 708-714. doi: 10.11999/JEIT140408
    JI Xinrong, HOU Cuiqin, and HOU Yibin. Research on the distributed training method for linear SVM in WSN[J]. Journal of Electronics Information Technology, 2015, 37(3): 708-714. doi: 10.11999/JEIT140408.
    LI S, SHAN S, and CHEN X. Relative forest for attribute prediction[C]. Asian Conference on Computer Vision, Daejeon, Korea, 2012: 316-327.
    JAYARAMAN D and GRAUMAN K. Zero shot recognition with unreliable attributes[C]. Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2014: 3464-3472.
    HUANG S, ELHOSEINY M, ELGAMMAL A, et al.. Learning hypergraph-regularized attribute predictors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 409-417.
    XUE J H and HALL P. Why does rebalancing class-unbalanced data improve AUC for linear discriminant analysis?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(5): 1109-12. doi: 10.1109/ TPAMI.2014.2359660.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1380
  • HTML全文瀏覽量:  259
  • PDF下載量:  420
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-25
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-07-19

目錄

    /

    返回文章
    返回