三維成像聲吶分區(qū)域FFT波束形成算法設(shè)計(jì)
doi: 10.11999/JEIT161132
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(11304343)
The Design of Sub Region FFT Beam Forming Algorithm of 3D-sonar
Funds:
The National Natural Science Foundation of China (11304343)
-
摘要: 為解決傳統(tǒng)均勻FFT波束形成算法引起的3維聲吶成像分辨率降低的問(wèn)題,該文提出分區(qū)域FFT波束形成算法。遠(yuǎn)場(chǎng)條件下,以保證成像分辨率為約束條件,以劃分?jǐn)?shù)量最少為目標(biāo),采用遺傳算法作為優(yōu)化手段將成像區(qū)域劃分為多個(gè)區(qū)域。在每個(gè)區(qū)域內(nèi)選取一個(gè)波束方向,獲得每一個(gè)接收陣元收到該方向回波時(shí)的解調(diào)輸出,以此為原始數(shù)據(jù)在該區(qū)域內(nèi)進(jìn)行傳統(tǒng)均勻FFT波束形成。對(duì)FFT計(jì)算過(guò)程進(jìn)行優(yōu)化,降低新算法的計(jì)算量,使其滿足3維成像聲吶實(shí)時(shí)性的要求。仿真與實(shí)驗(yàn)結(jié)果表明,采用分區(qū)域FFT波束形成算法的成像分辨率較傳統(tǒng)均勻FFT波束形成算法有顯著提高,且滿足實(shí)時(shí)性要求。Abstract: In order to solve the problem that traditional uniform FFT beamforming algorithm reduces the resolution of 3-D sonar imaging, this paper presents a sub-region FFT beamforming algorithm. In the far field, the imaging area is partitioned into multiple regions using genetic algorithm as the optimization method. The objective of the optimization process is to minimize the number of partitions, with the constraints being the imaging resolution. In each region, a beam direction is selected to obtain the demodulated output when each receiving element receives the directional echo as the original data, and the traditional uniform FFT beamforming is performed in the region. The FFT computation process is optimized to reduce the computational complexity of the new algorithm to meet the real-time requirements of 3D imaging sonar. Simulation and experimental results show that the imaging resolution of the sub-region FFT beamforming algorithm is significantly higher than that of the traditional uniform FFT beamforming algorithm, and satisfies the real-time requirement.
-
Key words:
- Hydroacoustics /
- 3-D sonar system /
- Beam forming /
- Imaging resolution /
- FFT
-
LI Bin, JIN Lijun, HONG Jia, et al. Application of three- dimension imaging sonar technology in detection of underwater structure[J]. Journal of Water Resources Water Engineering, 2015, 26(3): 184-188. doi: 10.11705/j.issn. 1672-643X.2015.03.38. 李斌, 金利軍, 洪佳, 等. 三維成像聲納技術(shù)在水下結(jié)構(gòu)探測(cè)中的應(yīng)用[J]. 水資源與水工程學(xué)報(bào), 2015, 26(3): 184-188. doi: 10. 11705/j.issn.1672-643X.2015.03.38. 王朋. 基于稀疏布陣的三維成像聲納信號(hào)處理算法研究[D]. [博士論文], 中國(guó)科學(xué)院大學(xué), 2015: 40-90. WANG Peng. Research on signal processing algorithm of three-dimensional acoustical imaging sonar based on sparse planar array [D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2015: 40-90. 袁龍濤. 相控陣三維攝像聲納系統(tǒng)信號(hào)處理關(guān)鍵技術(shù)研究[D]. [博士論文], 浙江大學(xué), 2013: 67-83. YUAN Longtao. Research on key technologies of signal processing for phased array three-dimensional imaging sonar system [D]. [Ph.D. dissertation], Zhejiang University, 2013: 67-83. 陳朋. 相控陣三維成像聲納系統(tǒng)的稀疏陣及波束形成算法研究[D]. [博士論文], 浙江大學(xué), 2009: 61-79. CHEN Peng. Research on sparse array and beamforming algorithm for phased array three-dimensional imaging sonar system[D]. [Ph.D. dissertation], Zhejiang University, 2009: 61-79. 李啟虎. 聲吶信號(hào)處理引論[M]. 北京: 海洋出版社, 2000: 222-224. LI Qihu. Introduction to Sonar Signal Processing [M]. Beijing: China Ocean Press, 2000: 222-224. HAMPSON G and PAPLINSKI A. phase shift beamforming using Cordic[C]. International Symposium on Signal Processing and Its Applications, ISSPA, Gold Coast, Austrilia, 1996: 684-687. 印明明, 劉平香. GPU實(shí)現(xiàn)水下三維成像研究[J]. 聲學(xué)技術(shù), 2014, 33(5): 53-57. YIN Mingming and LIU Pingxiang. Study on 3D image sonar based on GPU[J]. Technical Acoustics, 2014, 33(5): 53-57. 胡將. 基于Kintex-7的三維聲學(xué)成像主信號(hào)處理系統(tǒng)硬件設(shè)計(jì)[D]. [碩士論文], 浙江大學(xué), 2016: 17-47. HU Jiang. Hardware design of three-dimensional acoustic imaging main signal processing system based on Kintex-7[D]. [Master dissertation], Zhejiang University, 2016: 17-47. PALMESE M and TRUCCO A. Three-dimensional acoustic imaging by Chirp Zeta transform digital beamforming[J]. IEEE Transactions on Instrumentation and Measurement. 2009, 58(7): 2080-2086. doi: 10.1109/TIM.2009.2015523. CHI Cheng, LI Zhaohui, and LI Qihu. Fast broadband beamforming using nonuniform fast Fourier transform for underwater real-time 3-D acoustical imaging[J]. IEEE Journal of Oceanic Engineering, 2016, 41(2): 249-261. doi: 10.1109/JOE.2015.2429251. 王朋, 張揚(yáng)帆, 黃勇, 等. 基于稀疏布陣的實(shí)時(shí)三維成像聲納系統(tǒng)[J]. 儀器儀表學(xué)報(bào), 2016, 37(4): 843-851. WANG Peng, ZHANG Yangfan, HUANG Yong, et al. Real- time 3D acoustical imaging sonar system based on sparse planar array[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 843-851. 王繼強(qiáng). 集合覆蓋問(wèn)題的模型與算法[J]. 計(jì)算機(jī)工程與應(yīng)用, 2013, 49(17): 15-17. doi: 10.3778/j.issn.1002-8331.1303-0383. WANG Jiqiang. Model and algorithm for set cover problem[J]. Computer Engineering and Applications, 2013, 49(17): 15-17. doi: 10.3778/j.issn.1002-8331.1303-0383. ZHANG Xinyang, ZHANG Jun, GONG Yuejiao, et al. Kuhn- Munkres parallel genetic algorithm for the set cover problem and its application to large-scale wireless sensor networks[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 695-710. doi: 10.1109/TEVC.2015.2511142. MAHMOUD Owais, MOSTAFA K, and GHADA Moussa. Multi-objective transit route network design as set covering problem[J]. IEEE Transactions on Intelligent Transportation System, 2016, 17(3): 670-679. doi: 10.1109/TITS.2015. 2480885. XU Yihu and LIM Myongseob. Split-radix FFT pruning for the reduction of computational complexity in OFDM based cognitive radio system[C]. Proceedings of the IEEE International Symposium on Circuits and Systems(ISCAS), Paris, 2010: 69-72. doi: 10.1109/ISCAS.2010.5537048. 程靜靜. 陣列幅相誤差校正及實(shí)現(xiàn)研究[D]. [碩士論文], 南京理工大學(xué), 2014: 36-53. CHENG Jingjing. Research on implementation of array gain and phase error calibraion[D]. [Master dissertation], Nanjing University of Science and Technology, 2014: 36-53. -
計(jì)量
- 文章訪問(wèn)數(shù): 1370
- HTML全文瀏覽量: 109
- PDF下載量: 210
- 被引次數(shù): 0