一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于模糊聚類的多分辨率社區(qū)發(fā)現(xiàn)方法

汪曉鋒 劉功申 李建華

汪曉鋒, 劉功申, 李建華. 基于模糊聚類的多分辨率社區(qū)發(fā)現(xiàn)方法[J]. 電子與信息學(xué)報, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
引用本文: 汪曉鋒, 劉功申, 李建華. 基于模糊聚類的多分辨率社區(qū)發(fā)現(xiàn)方法[J]. 電子與信息學(xué)報, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
Citation: WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116

基于模糊聚類的多分辨率社區(qū)發(fā)現(xiàn)方法

doi: 10.11999/JEIT161116
基金項目: 

國家973關(guān)鍵技術(shù)研究項目(2013CB329603),國家自然科學(xué)基金(61472248, 61431008)

Multiresolution Community Detection Based on Fuzzy Clustering

Funds: 

The National 973 Key Basic Research Program of China (2013CB329603), The National Natural Science Foundation of China (61472248, 61431008)

  • 摘要: 針對網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜性和群體劃分的不確定性,該文提出一種基于模糊聚類的多分辨率社區(qū)結(jié)構(gòu)發(fā)現(xiàn)方法。該方法用模糊方法來處理網(wǎng)絡(luò)節(jié)點間的相似性,以實現(xiàn)社區(qū)結(jié)構(gòu)的模糊劃分。基于節(jié)點間的局部交互信息,考慮節(jié)點間的模糊關(guān)系和網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)相似性傳遞,實現(xiàn)網(wǎng)絡(luò)社區(qū)的層次聚類。并通過調(diào)節(jié)模糊參數(shù),挖掘出不同分辨率下的社區(qū)結(jié)構(gòu)。同時為了避免主觀地確定社區(qū)數(shù)目,引入一種新的模塊度以度量社區(qū)劃分結(jié)果。實驗證明該方法能夠有效且穩(wěn)定地揭示潛在的社區(qū)結(jié)構(gòu)。
  • WANG Xiaofan, LI Xiang, and CHEN Guanrong. Network Science: A Introduction[M]. Beijing: Higher Education Press, 2012: 1-27.
    汪小帆, 李翔, 陳關(guān)榮. 網(wǎng)絡(luò)科學(xué)導(dǎo)論[M]. 北京: 高等教育出版社, 2012: 1-27.
    NEWMAN M E J. Complex systems: A survey[J]. American Journal of Physics, 2011, 79(8): 800-810. doi: 10.1119/ 1.3590372.
    FORTUNAO S and DARKO H. Community detection in networks: A user guide[J]. Physics Reports, 2016, 659: 1-44. doi: 10.1016/j.physrep.2016.09.002.
    ZHANG P, MOORE C, and NEWMAN M E J. Community detection in networks with unequal groups[J]. Physical Review E, 2016, 93(1): 012303. doi: 10.1103/PhysRevE.93. 012303.
    NEWMAN M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1): 25-31. doi:10.1038/ nphys2162.
    SCHAEFFER S E. Graph clustering[J]. Computer Science Review, 2007, 1(1): 27-64. doi: 10.1016/j.cosrev.2007.05.001.
    MALLIAROS F D and VAZIRGIANNIS M. Clustering and community detection in directed networks: A survey[J]. Physics Reports, 2013, 533(4): 95-142. doi: 10.1016/j.physrep. 2013.08.002.
    CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111.
    LI Ming, DENG Youjin, and WANG Binghong. Clique percolation in random graphs[J]. Physical Review E, 2015, 92(4): 042116. doi: 10.1103/PhysRevE.92.042116.
    LEE C, REID F, FCDAID A, et al. Detecting highly overlapping community structure by greedy clique expansion [C]. Proceeding of 4th SNA-KDD Workshop on Social Network Mining and Analysis, Washington DC, USA, 2010: 33-42.
    AFSARMANESH N and MAGNANI M. Finding overlapping communities in multiplex networks[OL]. https://arxiv.org/ abs/1602.03746.2016.
    YANG B and LIU J. Discovering global network communities based on local centralities[J]. ACM Transactions on the Web, 2008, 2(1): 1-32. doi: 10.1145/1326561.1326570.
    NIKOLAEV A G, RAZIB R, and KUCHERIYA A. On efficient use of entropy centrality for social network analysis and community detection[J]. Social Networks, 2015, 40: 154-162. doi: 10.1016/j.socnet.2014.10.002.
    NASCIMENTO M C V and CARVALHO A C. Spectral methods for graph clustering-A survey[J]. European Journal of Operational Research, 2011, 211(2): 221-231. doi: 10.1016/ j.ejor.2010.08.012.
    YANG J and LESKOVEC J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and Information Systems, 2015, 42(1): 181-213. doi: 10.1007/ s10115-013-0693-z.
    XIANG Ju, HU Tao, ZHANG Yan, et al. Local modularity for community detection in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, (443): 451-459. doi: 10.1016/j.physa.2015.09.093.
    BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, (10): P10008.
    GOMEZ D, RODRIGUEZ J T, YANEZ J, et al. A new modularity measure for fuzzy community detection problems based on overlap and grouping functions[J]. Approximate Reasoning, 2016, 74: 88-107. doi: 10.1016/j.ijar. 2016.03.003.
    AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182.
    DING Z, ZHANG X, SUN D, et al. Overlapping community detection based on network decomposition[J]. Scientific Reports, 2016, 6: 24115. doi: 10.1038/srep24115.
    HUANG Lan, WANG Guishen, WANG Yan, et al. A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J]. International Journal of Modern Physics B, 2016, 30(24): 1650167. doi: 10.1142/S0217979216501678.
    NEWMAN M E J and GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
    PAN Y, LI D H, LIU J G, et al. Detecting community structure in complex networks via node similarity[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(14): 2849-2857. doi: 10.1016/j.physa. 2010.03.006.
    PAPADOPOULOS F, KITSAK M, SERRANO M A, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540. doi: 10.1038/nature11459.
    RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663. doi: 10.1073/ pnas.0400054101.
    XIE Jierui, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: the state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): Article No. 43. doi: 10.1145/2501654.2501657.
    XU Rui and WUNSCH D. Survey of clustering alogrithms[J]. IEEE Transactions on Neural Networks, 2005, 3(16): 645-678. doi: 10.1109/TNN.2005.845141.
    陳水利, 李敬功, 王向公. 模糊集理論及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2005: 1-448.
    CHEN Shuili, LI Jinggong, and WANG Xianggong. Fuzzy Set Theory and Its Application[M]. Beijing: Science Press, 2005: 1-448.
    ZADEH L A. Toward a generalized theory of uncertainty (GTU)-an outline[J]. Information Sciences, 2005, 172(1): 1-40.
    BARALDI A and BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition I[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(6): 778-785. doi: 10.1109/3477.809032.
    DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics-Theory and Experiment, 2005, (9): P09008.
    LANCICHINETTI A, FORTUNATO S, and RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4): 046110. doi: 10.1103/PhysRevE. 78.046110.
    PONS P and LATAPY M. Computing communities in large networks using random walks[C]. Proceeding of 20th International Symposium on Computer and Information Sciences, Turkey, 2005: 284-293. doi: 10.1007/11569596_31.
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. doi: 10.1073/ pnas.0706851105.
  • 加載中
計量
  • 文章訪問數(shù):  1563
  • HTML全文瀏覽量:  253
  • PDF下載量:  483
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-20
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-09-19

目錄

    /

    返回文章
    返回