基于模糊聚類的多分辨率社區(qū)發(fā)現(xiàn)方法
doi: 10.11999/JEIT161116
基金項目:
國家973關(guān)鍵技術(shù)研究項目(2013CB329603),國家自然科學(xué)基金(61472248, 61431008)
Multiresolution Community Detection Based on Fuzzy Clustering
Funds:
The National 973 Key Basic Research Program of China (2013CB329603), The National Natural Science Foundation of China (61472248, 61431008)
-
摘要: 針對網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜性和群體劃分的不確定性,該文提出一種基于模糊聚類的多分辨率社區(qū)結(jié)構(gòu)發(fā)現(xiàn)方法。該方法用模糊方法來處理網(wǎng)絡(luò)節(jié)點間的相似性,以實現(xiàn)社區(qū)結(jié)構(gòu)的模糊劃分。基于節(jié)點間的局部交互信息,考慮節(jié)點間的模糊關(guān)系和網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)相似性傳遞,實現(xiàn)網(wǎng)絡(luò)社區(qū)的層次聚類。并通過調(diào)節(jié)模糊參數(shù),挖掘出不同分辨率下的社區(qū)結(jié)構(gòu)。同時為了避免主觀地確定社區(qū)數(shù)目,引入一種新的模塊度以度量社區(qū)劃分結(jié)果。實驗證明該方法能夠有效且穩(wěn)定地揭示潛在的社區(qū)結(jié)構(gòu)。
-
關(guān)鍵詞:
- 社交網(wǎng)絡(luò) /
- 社區(qū)發(fā)現(xiàn) /
- 模糊聚類 /
- 結(jié)構(gòu)相似性
Abstract: Focusing on the complexity of network structure and the indeterminacy of community partition, this paper puts forward a novel fuzzy clustering method for uncovering community structures. In contrast to previous studies, the proposed method disposes the similarity of connecting vertices with fuzzy relation. Based on local interactive information, it considers the fuzzy relation between vertices and the transitive similarity in network topology to divide vertices into communities. In addition, multiresolution communities can be detected by adjusting fuzzy parameter. In order to avoid subjectivity in the selection of cluster number, a new modularity is introduced to evaluate the effectiveness of the clustering analysis. It is proved by experiments that the method is ef?cient and stable to detect underlying communities.-
Key words:
- Social network /
- Community structure /
- Fuzzy clustering /
- Structural similarity
-
WANG Xiaofan, LI Xiang, and CHEN Guanrong. Network Science: A Introduction[M]. Beijing: Higher Education Press, 2012: 1-27. 汪小帆, 李翔, 陳關(guān)榮. 網(wǎng)絡(luò)科學(xué)導(dǎo)論[M]. 北京: 高等教育出版社, 2012: 1-27. NEWMAN M E J. Complex systems: A survey[J]. American Journal of Physics, 2011, 79(8): 800-810. doi: 10.1119/ 1.3590372. FORTUNAO S and DARKO H. Community detection in networks: A user guide[J]. Physics Reports, 2016, 659: 1-44. doi: 10.1016/j.physrep.2016.09.002. ZHANG P, MOORE C, and NEWMAN M E J. Community detection in networks with unequal groups[J]. Physical Review E, 2016, 93(1): 012303. doi: 10.1103/PhysRevE.93. 012303. NEWMAN M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1): 25-31. doi:10.1038/ nphys2162. SCHAEFFER S E. Graph clustering[J]. Computer Science Review, 2007, 1(1): 27-64. doi: 10.1016/j.cosrev.2007.05.001. MALLIAROS F D and VAZIRGIANNIS M. Clustering and community detection in directed networks: A survey[J]. Physics Reports, 2013, 533(4): 95-142. doi: 10.1016/j.physrep. 2013.08.002. CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111. LI Ming, DENG Youjin, and WANG Binghong. Clique percolation in random graphs[J]. Physical Review E, 2015, 92(4): 042116. doi: 10.1103/PhysRevE.92.042116. LEE C, REID F, FCDAID A, et al. Detecting highly overlapping community structure by greedy clique expansion [C]. Proceeding of 4th SNA-KDD Workshop on Social Network Mining and Analysis, Washington DC, USA, 2010: 33-42. AFSARMANESH N and MAGNANI M. Finding overlapping communities in multiplex networks[OL]. https://arxiv.org/ abs/1602.03746.2016. YANG B and LIU J. Discovering global network communities based on local centralities[J]. ACM Transactions on the Web, 2008, 2(1): 1-32. doi: 10.1145/1326561.1326570. NIKOLAEV A G, RAZIB R, and KUCHERIYA A. On efficient use of entropy centrality for social network analysis and community detection[J]. Social Networks, 2015, 40: 154-162. doi: 10.1016/j.socnet.2014.10.002. NASCIMENTO M C V and CARVALHO A C. Spectral methods for graph clustering-A survey[J]. European Journal of Operational Research, 2011, 211(2): 221-231. doi: 10.1016/ j.ejor.2010.08.012. YANG J and LESKOVEC J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and Information Systems, 2015, 42(1): 181-213. doi: 10.1007/ s10115-013-0693-z. XIANG Ju, HU Tao, ZHANG Yan, et al. Local modularity for community detection in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, (443): 451-459. doi: 10.1016/j.physa.2015.09.093. BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, (10): P10008. GOMEZ D, RODRIGUEZ J T, YANEZ J, et al. A new modularity measure for fuzzy community detection problems based on overlap and grouping functions[J]. Approximate Reasoning, 2016, 74: 88-107. doi: 10.1016/j.ijar. 2016.03.003. AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182. DING Z, ZHANG X, SUN D, et al. Overlapping community detection based on network decomposition[J]. Scientific Reports, 2016, 6: 24115. doi: 10.1038/srep24115. HUANG Lan, WANG Guishen, WANG Yan, et al. A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J]. International Journal of Modern Physics B, 2016, 30(24): 1650167. doi: 10.1142/S0217979216501678. NEWMAN M E J and GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113. PAN Y, LI D H, LIU J G, et al. Detecting community structure in complex networks via node similarity[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(14): 2849-2857. doi: 10.1016/j.physa. 2010.03.006. PAPADOPOULOS F, KITSAK M, SERRANO M A, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540. doi: 10.1038/nature11459. RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663. doi: 10.1073/ pnas.0400054101. XIE Jierui, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: the state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): Article No. 43. doi: 10.1145/2501654.2501657. XU Rui and WUNSCH D. Survey of clustering alogrithms[J]. IEEE Transactions on Neural Networks, 2005, 3(16): 645-678. doi: 10.1109/TNN.2005.845141. 陳水利, 李敬功, 王向公. 模糊集理論及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2005: 1-448. CHEN Shuili, LI Jinggong, and WANG Xianggong. Fuzzy Set Theory and Its Application[M]. Beijing: Science Press, 2005: 1-448. ZADEH L A. Toward a generalized theory of uncertainty (GTU)-an outline[J]. Information Sciences, 2005, 172(1): 1-40. BARALDI A and BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition I[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(6): 778-785. doi: 10.1109/3477.809032. DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics-Theory and Experiment, 2005, (9): P09008. LANCICHINETTI A, FORTUNATO S, and RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4): 046110. doi: 10.1103/PhysRevE. 78.046110. PONS P and LATAPY M. Computing communities in large networks using random walks[C]. Proceeding of 20th International Symposium on Computer and Information Sciences, Turkey, 2005: 284-293. doi: 10.1007/11569596_31. ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. doi: 10.1073/ pnas.0706851105. -
計量
- 文章訪問數(shù): 1563
- HTML全文瀏覽量: 253
- PDF下載量: 483
- 被引次數(shù): 0