Fault-tolerant Analysis for Feedback Based Digital Circuit via Probabilistic CMOS Model
Funds:
The National Natural Science Foundation of China (61371104)
-
摘要: 反饋環(huán)路是模擬電路中有效容錯的電路結(jié)構(gòu)。反饋電路也因其存儲性能而被廣泛使用于數(shù)字電路的時序電路中,但是反饋電路在數(shù)字電路的組合電路的穩(wěn)定特性鮮少被人研究,尤其是低功耗應(yīng)用。以馬氏隨機(jī)場為理論的MRF電路以其低功耗下的高穩(wěn)定性得到研究和關(guān)注,但其電路的反饋結(jié)構(gòu)缺乏理論支持和依據(jù),因此馬氏隨機(jī)場電路的容錯特性未被清晰得以解釋。該文以利用概率CMOS建模概率門來分析MRF核心反饋環(huán)NAND-NAND,從理論上證明了反饋電路輸出的計算正確概率具有遞增且上有界的特點,并數(shù)學(xué)證明了MRF的核心反饋環(huán)電路具有優(yōu)于傳統(tǒng)CMOS電路的容錯性能。其理論推導(dǎo)結(jié)果與測試結(jié)果呈現(xiàn)一致性。Abstract: Feedback structure is an efficient topology for noise-reducing in analog circuit while the cyclic circuit is widely used in digital circuit only for sequential circuit design due to its data-keeping property. However, few works study the reliability of the feedback structure for combinational circuits especially for the low power application. Many researchers pay their attentions to Markov Random Field (MRF) theory based circuits, which can operate in ultra-low supply voltage with high noise-immune. However, the MRF based circuit design methodology has a lack of the proof of the final feedback structures. Thus the reliability of MRF based feedback structures is not explained clearly. This paper uses the probabilistic CMOS model to analysis the NAND-NAND based feedback structure. The probability boundedness and increasing monotonicity properties of feedback structure are proved. Besides, it is proved that the feedback structure of MRF can achieve higher probability than the traditional design. In measurement, the result can support of proof and analysis.
-
Key words:
- Feedback circuits /
- Fault-tolerant /
- Probabilistic CMOS
-
SLOANE N J A, WYNER A D, and SHANNON C E. Collected Papers[M]. New York: Wiley-IEEE Press, 1993: 711-714. doi: 10.1109/9780470544242.ch50. RIVEST R L. The necessity of feedback in minimal monotone combinational circuits[J]. IEEE Transactions on Computers, 1997, C-26(6): 606-607. doi: 10.1109/TC.1977.1674886. STOK L. False loops through resource sharing[C]. IEEE/ ACM International Conference on Computer-aided Design, Santa Clara, CA, USA, 1992: 345-348. doi: 10.1109/ICCAD. 1992.279349. CHEN J H, CHEN Y C, and WENG W C. Synthesis and verification of cyclic combinational circuits[C]. IEEE International System-on-Chip Conference, Beijing, 2015: 257-262. doi: 10.1109/SOCC.2015.7406959. KUMER V. Design methodology for multiple output combinational circuits using cyclic combinational technique[J]. Journal of Circuits, Systems Computers, 2016, 25(12): 165013. RIEDEL M D and BURCK J. The synthesis of cyclic combinational circuits[C]. ACM Design Automation Conference. Anaheim, CA, 2003: 163-168. doi: 10.1145/ 775832.775875. BAHAR R and MUNDY J. A probabilistic-based design methodology for nanoscale computation[C]. IEEE/ACM International Conference on Computer-aided Design, San Jose, CA, USA, 2003: 480-486. doi: 10.1109/ICCAD.2003. 159727. NEPAL K, BAHAR R I, and MUNDY J. Designing logic circuits for probabilistic computation in the presence of noise[C]. ACM Design Automation Conference, Anaheim, CA, 2005: 485-490. doi: 10.1145/1065579.1065706. WEY I C, CHEN Y G, and YU C H. Design and implementation of cost-effective probabilistic-based noise- tolerant VLSI circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(11): 2411-2424. doi: 10.1109/TCSI.2009.2015648. LI Y, HU J, and LU H. Area-efficient partial-clique-energy MRF pair design with ultra-low supply voltage[C]. IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 261-264. doi: 10.1109/ISCAS.2016.7527220. LI Y, LI X, and HU J. Area-sharing cyclic structure MRF circuits design in ultra-low supply voltage[C]. IEEE International Symposium on Circuits and Systems, Lisbon, 2015: 2353-2356. doi: 10.1109/ISCAS.2015.7169156. WEY I C, CHEN Y G, and YU C. A 0.18 m probabilistic- based noise-tolerate circuit design and implementation with 28.7 dB noise-immunity improvement[C]. IEEE Asian Solid- State Circuits Conference, Hangzhou, China, 2006: 291-294. doi: 10.1109/ASSCC.2006.357908. WEY I C, LAN Y J, and PEND C. Reliable ultra-low-voltage low-power probabilistic-based noise-tolerant latch design[J]. Microelectronics Reliability, 2013, 53(12): 2057-2069. XIAO R and CHEN C. Power optimization design for probabilistic logic circuits[C]. IEEE International Symposium on Circuits and Systems, Lisbon, 2015: 2593-2595. doi: 10.1109/ISCAS.2015.7169216. KORKMAZ P and PALEM K V. Energy, performance, and probability tradeoffs for energy-efficient probabilistic CMOS circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(8): 2249-2262. doi: 10.1109/TCSI. 2008.920139. -
計量
- 文章訪問數(shù): 1025
- HTML全文瀏覽量: 132
- PDF下載量: 322
- 被引次數(shù): 0