基于t分布混合模型的抗差關(guān)聯(lián)算法
doi: 10.11999/JEIT161084
基金項(xiàng)目:
國家自然科學(xué)基金(61471382, 61401495, 61501487, 61531020),山東省自然科學(xué)基金(2015ZRA06052)
Anti-bias Track Association Algorithm Based on t-distribution Mixture Model
Funds:
The National Natural Science Foundation of China (61471382, 61401495, 61501487, 61531020), The Natural Science Foundation of Shandong Province (2015ZRA06052)
-
摘要: 針對傳感器系統(tǒng)誤差和觀測目標(biāo)不完全一致的情況下目標(biāo)航跡關(guān)聯(lián)中魯棒性問題,該文提出一種基于t分布混合模型的抗差關(guān)聯(lián)算法。將航跡關(guān)聯(lián)問題轉(zhuǎn)化為圖像匹配中的非剛性點(diǎn)集匹配問題,針對非共同觀測目標(biāo)影響關(guān)聯(lián)性能的問題,將非共同觀測目標(biāo)的航跡視為圖像匹配中的異常點(diǎn),建立了對異常點(diǎn)具有更好魯棒性的重拖尾t分布混合模型,利用期望最大化(EM)算法求解t分布混合模型的閉合解,在求解中為了確保航跡點(diǎn)間的運(yùn)動一致性(CPD),加入Tikhonov正則項(xiàng)。最后通過實(shí)驗(yàn)仿真驗(yàn)證,所提算法在系統(tǒng)誤差和觀測目標(biāo)不完全一致情況下的魯棒性和有效性。
-
關(guān)鍵詞:
- 航跡關(guān)聯(lián) /
- 系統(tǒng)誤差 /
- t分布混合模型 /
- 期望最大化算法 /
- 運(yùn)動一致性
Abstract: In order to solve the problem of robust track-to-track association in the presence of sensor biases and non-identical observation, an anti-bias track association algorithm based on t-distribution mixture model is proposed. The robust track-to-track association problem is turned into the non-rigid point matching problem. The tracks of non-common are regarded as outliers in the point matching for the effects of the track-to-track association caused by non-identical observation. The heavy-tailed t-distribution mixture model is established with better robustness to outliers. The closed-form solution of t-distribution mixture model is solved by Expectation Maximization (EM) algorithm. The conditional expectation function is added a regular item of point set, so that the points have a feature of Coherent Point Drift (CPD). Finally, the effectiveness of the proposed algorithm is verified by simulation experiments at the presence of sensor biases and missed detections. -
齊林, 崔亞奇, 熊偉, 等. 基于距離檢測的自動識別系統(tǒng)和對海雷達(dá)航跡抗差關(guān)聯(lián)算法[J]. 電子與信息學(xué)報, 2015, 37(8): 1855-1861. doi: 10.11999/JEIT141472. QI Lin, CUI Yaqi, XIONG Wei, et al. Anti-bias association algorithm for automatic identification system and radar based on bias detection[J]. Journal of Electronics Information Technology, 2015, 37(8): 1855-1861. doi: 10. 11999/JEIT141472. ZHU Hao, Leung H, and Yuen K V. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences, 2015, 324(C): 186-196. 何友, 宋強(qiáng), 熊偉. 基于傅里葉變換的航跡對準(zhǔn)關(guān)聯(lián)算法[J]. 航空學(xué)報, 2010, 31(2): 356-362. HE You, SONG Qiang, and XIONG Wei. A track registration-correlation algorithm based on fourier transform [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 356-362. ZHU Hongyan and HAN Suying. Track-to-track association based on structural similarity in the presence of sensor biases[J]. Journal of Applied Mathematics, 2014(1): 1-8. doi: 10.1155/2014/294657 ZHU Hongyan and WANG Chen. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41: 48-59. doi 10.1016/j.dsp. 2015.03.012.[5] 董凱, 王海鵬, 劉瑜. 基于拓?fù)浣y(tǒng)計(jì)距離的航跡抗差關(guān)聯(lián)算 法[J]. 電子與信息學(xué)報, 2015, 37(1): 50-55. doi: 10.11999/ JEIT140244. DONG Kai, WANG Haipeng, and LIU Yu. Anti- bias track association algorithm based on topology statistical distance[J]. Journal of Electronics Information Technology, 2015, 37(1): 50-55. doi: 10.11999/JEIT140244. HUANG D, LEUNG H, and BOSSE E. A pseudo- measurement approach to simultaneous registration and track fusion[J]. IEEE Transactions on Aerospace Electronic Systems, 2012, 48(3): 2315-2331. doi: 10.1109/TAES.2012. 6237594. ZHU Hongyan and CHEN Shuo. Track fusion in the presence of sensor biases[J]. IET Signal Processing, 2014, 8(9): 958-967. doi: 10.1049/iet-spr.2013.0393. ZHU Hongyan, WANG Wei, and WANG Chen. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27: 33-40. doi: 10.1016/j.inffus.2015.05.002. 朱洪艷, 張穎, 王琛. 基于松弛標(biāo)號算法的多傳感抗差航跡關(guān)聯(lián)[J]. 控制與決策, 2015, 30(4): 593-598. doi: 10.13195/ j.kzyjc.2014.0134. ZHU Hongyan, ZHANG Ying, and WANG Chen. Anti-biases track-to-track association based on relaxation labeling[J]. Control Decision, 2015, 30(4): 593-598. doi: 10.13195/j. kzyjc.2014.0134. LEE S X and MCLACHLAN G J. Finite mixtures of canonical fundamental skew t-distributions[J]. Statistics Computing, 2016, 26(3): 573-589. doi: 10.1007/s11222-015- 9545-x PEEL D and MCLACHLAN G J. Robust mixture modelling using the t distribution[J]. Statistics Computing, 2000, 10(4): 339-348. doi: 10.1023/A:1008981510081. WU C.F.J. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1): 95-103. LIU C and RUBIN D B. ML estimation of the t distribution using EM and its extensions, ECM and ECME[J]. Statistica Sinica, 1995, 5(1): 19-39. MYRONENKO A and SONG X. Point set registration: Coherent point drift[J]. IEEE Transactions on Software Engineering, 2010, 32(12): 2262-2275. doi: 10.1109/TPAMI. 2010.46. -
計(jì)量
- 文章訪問數(shù): 1443
- HTML全文瀏覽量: 206
- PDF下載量: 301
- 被引次數(shù): 0