一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于PGBN模型的SAR圖像目標(biāo)識別方法

郭丹丹 陳渤 叢玉來 文偉

郭丹丹, 陳渤, 叢玉來, 文偉. 基于PGBN模型的SAR圖像目標(biāo)識別方法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
引用本文: 郭丹丹, 陳渤, 叢玉來, 文偉. 基于PGBN模型的SAR圖像目標(biāo)識別方法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
GUO Dandan, CHEN Bo, CONG Yulai, WEN Wei. SAR Image Recognition Method with Poisson Gamma Belief Network Model[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
Citation: GUO Dandan, CHEN Bo, CONG Yulai, WEN Wei. SAR Image Recognition Method with Poisson Gamma Belief Network Model[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068

基于PGBN模型的SAR圖像目標(biāo)識別方法

doi: 10.11999/JEIT161068
基金項(xiàng)目: 

國家自然科學(xué)基金(61372132, 61271291),新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET13-0945),杰出青年科學(xué)基金(61525105),青年千人計(jì)劃,國防預(yù)研基金

SAR Image Recognition Method with Poisson Gamma Belief Network Model

Funds: 

The National Natural Science Foundation of China (61372132, 61271291), The Program for New Century Excellent Talents (NCET13-0945), The National Science Fund for Distinguished Young Scholars (61525105), The Program for Young Thousand Talent by Chinese Central Government

  • 摘要: 特征提取是合成孔徑雷達(dá)圖像目標(biāo)識別的關(guān)鍵步驟,也是難點(diǎn)之一。該文提出一種基于PGBN(Poisson Gamma Belief Network)模型的SAR圖像目標(biāo)識別方法。PGBN模型作為一種深層貝葉斯生成網(wǎng)絡(luò),利用伽馬分布具有的高度非線性,從復(fù)雜的SAR圖像數(shù)據(jù)中獲得了更具結(jié)構(gòu)化的多層特征表示,這種多層特征表示有效提高了SAR圖像目標(biāo)識別性能。為了獲得更高的訓(xùn)練效率和識別率,該文進(jìn)一步采用樸素貝葉斯準(zhǔn)則提出了一種對PGBN模型進(jìn)行分類的方法。實(shí)驗(yàn)采用MSTAR的3類目標(biāo)數(shù)據(jù)進(jìn)行了驗(yàn)證,結(jié)果表明通過該方法提取的特征有更好的結(jié)構(gòu)信息,對SAR圖像目標(biāo)識別具有較好的性能。
  • 張紅, 王超, 張波. 高分辨率SAR圖像目標(biāo)識別[M]. 北京: 科學(xué)出版社, 2009: 5.2 節(jié).
    ZHANG Hong, WANG Chao, and ZHANG Bo. High Resolution SAR Images Target Recognition[M]. Beijing: Science Press, 2009: 5.2 Section.
    保錚, 邢孟道, 王彤. 雷達(dá)成像技術(shù)[M]. 北京: 電子工業(yè)出版社, 2004: 1.1 節(jié).
    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2004: 1.1 Section.
    HE Zhiguo, LU Jun, and YAO Kuanggang. A fast SAR target recognition approach using PCA features[C]. International Conference on Image and Graphics, Chengdu, China, 2007: 580-585.
    LIN C, PENG F, WANG B H, et al. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm[J]. Journal of Electronic Science and Technology, 2012, 10(4): 352-357.
    宦若虹, 楊汝良. 基于ICA和SVM的SAR圖像特征提取與目標(biāo)識別[J]. 計(jì)算機(jī)工程, 2008, 34(13): 24-25.
    HUAN Ruohong and YANG Ruliang. SAR images feature extraction and target recognition based on ICA and SVM[J]. Computer Engineering, 2008, 34(13): 24-25.
    LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
    LEE D D and SEUNG H S. Algorithms for non-negative matrix factorization[C]. Neural Information Processing Systems, Denver, CO, USA, 2000: 556-562.
    龍泓琳, 皮亦鳴, 曹宗杰. 基于非負(fù)矩陣分解的SAR圖像目標(biāo)識別[J]. 電子學(xué)報(bào), 2010, 38(6): 1425-1429.
    LONH Honglin, PI Yiming, and CAO Zongjie . Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6): 1425-1429.
    ZHOU Mingyuan and CARIN Lawrence. Beta-negative binomial process and Poisson factor analysis[C]. Artificial Intelligence and Statistics. La Palma, Canary Islads, Spain, 2012: 1462-1471.
    孫洪. 高分辨率SAR圖像目標(biāo)識別[M]. 北京: 電子工業(yè)出版社, 2013: 5.1 節(jié).
    SUN Hong. Processing of Synthetic Aperture Radar Images [M]. Beijing: Publishing House of Electronics Industry, 2013: 5.1 Section.
    ZHOU Mingyuan, CONG Yulai, and CHEN Bo. The Poisson Gamma belief network[C]. Neural Information Processing Systems, Montreal, Canda, 2015: 562-570.
    CHEN Y, ZHAO X, and JIA X. Spectral-Spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 1-12. doi: 10.1109/JSTAR.2015.2388577.
    張學(xué)峰. 雷達(dá)高分辨距離像目標(biāo)識別與拒判方法研究[D]. [博士論文], 西安電子科技大學(xué), 2016: 71-73.
    ZHANG Xuefeng. Study of radar target recognition and outlier rejection based on high range resolution profiles[D]. [Ph.D. dissertation], Xi dian University, 2016: 71-73.
    LIU X, LIU R, MA J, et al. Privacy-preserving patent-centric clinical decision support system on Nave Bayes classification [J]. IEEE Journal of Biomedical Health Informatics, 2016, 20(2): 655-668. doi: 10.1109/JBHI.2015.2407157.
    CHAN Chihchung and LIN Chinjen. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. doi: 10.1145/ 1961189.1961199.
    GE Hinton. A practical guide training restricted boltzmann machines[J]. Momentum, 2010, 9(1): 599-619. doi: 10.007/ 978-3-642-35289-8_32.
    丁軍, 劉宏偉, 陳渤. 相似性約束的深度置信網(wǎng)絡(luò)在SAR圖像目標(biāo)識別中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 91-103. doi: 10.11999/JEIT150366.
    DING Jun, LIU Hongwei, and CHEN Bo. Application of similar constraints deep belief networks in SAR image target recognition[J]. Journal of Electronics Information Technology, 2016, 38(1): 91-103. doi: 10.11999/JEIT150366.
    丁軍, 劉宏偉, 王英華, 等. 一種聯(lián)合陰影和目標(biāo)區(qū)域圖像的SAR目標(biāo)識別方法[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 594-600. doi: 10.11999/JEIT140713.
    DING Jun, LIU Hongwei, WANG Yinghua, et al. The method of SAR target recognition with joint shadow region and target region image[J]. Journal of Electronics Information Technology, 2015, 37(3): 594-600. doi: 10.11999/ JEIT140713.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  2174
  • HTML全文瀏覽量:  219
  • PDF下載量:  371
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-12
  • 修回日期:  2016-12-02
  • 刊出日期:  2016-12-19

目錄

    /

    返回文章
    返回