基于時空域的暗弱空間運(yùn)動點(diǎn)目標(biāo)檢測算法
doi: 10.11999/JEIT161044
-
2.
(中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所 長春 130033) ②(中國科學(xué)院大學(xué) 北京 100049)
國家863計劃項(xiàng)目(2011AA8082035),中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所三期創(chuàng)新工程資助項(xiàng)目(065X32CN60)
Moving Point Object Detection from Faint Space Based on Temporal-spatial Domain
-
2.
(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)
The National 863 Program of China (2011AA 8082035), The Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, the Third Phase of Innovative Engineering Projects (065X32CN60)
-
摘要: 為了對空間目標(biāo)進(jìn)行精確定位與跟蹤,建立目標(biāo)運(yùn)動軌跡,該文對基于運(yùn)動信息的星圖暗弱空間運(yùn)動點(diǎn)目標(biāo)檢測算法進(jìn)行研究。首先建立一種新的空間運(yùn)動點(diǎn)目標(biāo)描述模型,然后提出基于相關(guān)系數(shù)矩陣的運(yùn)動點(diǎn)目標(biāo)檢測算法,最后提取目標(biāo)運(yùn)動軌跡,并給出了點(diǎn)目標(biāo)運(yùn)動速度的估計模型。根據(jù)實(shí)測數(shù)據(jù)和硬件平臺,提出了檢測概率和虛警率相結(jié)合的評價方法對算法進(jìn)行驗(yàn)證。試驗(yàn)結(jié)果表明,所提方法能夠在保持較低的虛警概率下獲得較高的檢測概率,優(yōu)于參與比較的其它目標(biāo)檢測方法。與單純擴(kuò)大望遠(yuǎn)鏡口徑相比,該方法為提高空間暗弱目標(biāo)識別能力提供了具有更高性價比的有效途徑。
-
關(guān)鍵詞:
- 目標(biāo)檢測 /
- 運(yùn)動點(diǎn)目標(biāo) /
- 時空域互相關(guān) /
- 軌跡提取
Abstract: To accurately locate, track space targets, and establish targets trajectory, a study on moving target detection based on motion information for star maps is practiced. Firstly, a new model to characterize the space moving target is constructed, then an algorithm for moving point target detection is proposed based on correlation coefficient matrix statistical information. Based on the detection method, target motion trajectory is finally extracted and the velocity estimation model of the moving target is built. This paper also proposes an evaluation method, which combines detection probability and false alarm probability, to verify this method. The experimental results demonstrate that the proposed method outperforms the compared methods and can achieve high detection probability while keeping low false alarm probability. Compared with simply expanding telescope diameter, this method provides a higher performance-price ratio way to improve the ability of space target detection. -
吳連大. 人造衛(wèi)星與空間碎片的軌跡和探測[M]. 北京: 中國科學(xué)技術(shù)出版社, 2011: 1-8. WU Lianda. Orbits and Detection of Satellite and Space Debris[M]. Beijing: China Science and Technology Press, 2011: 1-8. 孫挺, 齊迎春, 耿國華. 基于幀間差分和背景差分的運(yùn)動目標(biāo)檢測算法[J]. 吉林大學(xué)學(xué)報(工學(xué)版), 2016, 46(4): 1325-1329. doi: 10.13229/j.cnki. jdxbgxb201604044. SUN Ting, QI Yingchun, and GENG Guohua. Moving object detection algorithm based on frame difference and background subtraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1325-1329. doi: 10.13229/j.cnki.jdxbgxb201604044. 江漢紅, 熊瑋佳, 李慶. 一種基于GMM的目標(biāo)檢測改進(jìn)算法[J]. 武漢理工大學(xué)學(xué)報, 2013, 35(3): 132-135. doi: 10.3963 /j.issn.1671-4431.2013.03.027. JIANG Hanhong, XIONG Weijia, and LI Qing. An improved target detection algorithm based on GMM[J]. Journal of Wuhan University of Technology, 2013, 35(3): 132-135. doi: 10.3963/j.issn.1671-4431.2013.03.027. PICCARDI M. Background subtraction techniques: A review [C]. IEEE International Conference on Systerms, Man and Cybemeties, Sydney, Australia, 2004: 3099-3104. doi: 10.1109 /ICSMC.2004.1400815. VALLEJO D, ALBUSAC J, and JIMENEZ L. A cognitive surveillance system for detection incorrect traffic behaviors[J]. Expert Systems with Applications, 2009, 36(7): 10503-10511. doi: 10.1016/j.eswa.20 09.01.034. SENET T, EISELEIN V, and PATZOLD M. Efficient real- time local optical flow estimation by means of integral projections[C]. International Conference on Image Processing (ICIP 2011), Brussel, 2011: 2393-2396. doi: 10.1109/ICIP. 2011.6116111. 肖軍, 朱世鵬, 黃杭, 等. 基于光流法的運(yùn)動目標(biāo)檢測與跟蹤算法[J]. 東北大學(xué)學(xué)報(自然科學(xué)版), 2016, 37(6): 770-774. doi: 10.3969/j.issn.1005-3026.2016.06.003. XIAO Jun, ZHU Shipeng, HUANG Hang, et al. Object detecting and tracking algorithm based on optic flow[J]. Journal of Northeastern University (Natural Science), 2016, 37(6): 770-774. doi: 10.3969/j.issn.1005-3026.2016.06.003. KRAVCHONOK A. Detection of moving objects in video sequences by the computation of optical flow based on region growing[J]. Pattern Recognition and Image Analysis, 2011, 21(2): 283-286. doi: 10.1134/S1054661811020647. 劉洪彬, 常發(fā)亮. 權(quán)重系數(shù)自適應(yīng)光流法運(yùn)動目標(biāo)檢測[J]. 光學(xué)精密工程, 2016, 24(2): 460-468. doi: 10.3788/OPE. 20162402.0460. LIU Hongbin and CHANG Faliang. Moving object detection by optical flow method based on adaptive weight coefficient [J]. Optics and Precision Engineering, 2016, 24(2): 460-468. doi: 10.3788/OPE.20162402.0460. 李淼, 龍云利, 李駿, 等. 采用多伯努利濾波器的過采樣點(diǎn)目標(biāo)檢測前跟蹤[J]. 光學(xué)精密工程, 2015, 23(12): 3446-3455. doi: 10.3788/OPE.20152312.3446. LI Miao, LONG Yunli, LI Jun, et al. Oversampling point target track-before-detect by Multi-Bernoulli filter[J]. Optics and Precision Engineering, 2015, 23(12): 3446-3455. doi: 10.3788/OPE.20152312.3446. ZHENG D K, WANG S Y, and QIN X. A dynamic programming track-before-detect algorithm based on local linearization for non-Gaussian clutter background[J]. Chinese Journal of Electronics, 2016, 25(3): 583-590. doi: 10.1049/cie. 2016.05.027. DAVEY S J, RUTTEN M G, and CHEUNG B. A comparison of detection performance for several track-before-detect algorithms[C]. Proceedings of the IEEE 2008 International Conference on Information Fusion, Cologne, Germany, 2008, 2008: 1-8. doi: 10.1155/2008/428036. 李振偉, 張濤, 孫明國. 星空背景下空間目標(biāo)的快速識別與精密跟蹤[J]. 光學(xué)精密工程, 2015, 23(2): 589-599. doi: 10.3788 /OPE.20152302.0589. LI Zhenwei, ZHANG Tao, and SUN Mingguo. Fast recognition and precise orientation of space objects in star background[J]. Optics and Precision Engineering, 2015, 23(2): 589-599. doi: 10.3788/OPE.20152302.0589. 張健, 婁樹理, 任建存. 基于時序多幀投影的空間目標(biāo)檢測算法[J]. 激光與紅外, 2015, 45(1): 88-93. doi: 10.3969/j.issn. 1001-5078.2015.01.020. ZHANG Jian, LOU Shuli, and REN Jiancun. Space target detection algorithm based on sequential multi-frames projection[J]. Laser Infrared, 2015, 45(1): 88-93. doi: 10.3969/j.issn.1001-507.2015.01.020. 王恩旺, 王恩達(dá). 改進(jìn)的幀差法在空間運(yùn)動目標(biāo)檢測中的應(yīng)用[J]. 天文研究與技術(shù), 2016, 13(3): 333-339. doi: 10.14005/ j.cnki.issn1672-7673.20160316.00. WANG Enwang and WANG Enda. Application of an improved frame difference method in space moving target detection[J]. Astronomical Research and Technology, 2016, 13(3): 333-339. doi: 10.14005/j.cnki.issn1672-7673.20160316. 002. 黃宗福, 汪金真, 陳曾平. 光電探測中空間目標(biāo)和恒星目標(biāo)運(yùn)動特性分析[J]. 光電工程, 2012, 39(4): 67-72. doi: 10.3969 /j.issn.1003-501X.2012.04.012. HUANG Zongfu, WANG Jinzhen, and CHEN Zengping. Motion characteristic analysis of space target and stellar target in opto-electronic observation[J]. Opto-Electronic Engineering, 2012, 39(4): 67-72. doi: 10.3969/j.issn.1003- 501X.2012.04.012. 張春華, 周曉東, 陳維真. 基于背景抑制的星空圖像目標(biāo)運(yùn)動軌跡提取[J]. 紅外與激光工程, 2008, 37(1): 143-146. doi: 10.3969/j.issn.1007-2276.2008.01.033. ZHANG Chunhua, ZHOU Xiaodong, and CHEN Weizhen. Target trace acquisition method of star images based on background elimination[J]. Infrared and Laser Engineering, 2008, 37(1): 143-146. doi: 10.3969/j. issn.1007-2276.2008.01. 033. -
計量
- 文章訪問數(shù): 1666
- HTML全文瀏覽量: 250
- PDF下載量: 468
- 被引次數(shù): 0