一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于注意循環(huán)神經(jīng)網(wǎng)絡(luò)模型的雷達(dá)高分辨率距離像目標(biāo)識(shí)別

徐彬 陳渤 劉宏偉 金林

徐彬, 陳渤, 劉宏偉, 金林. 基于注意循環(huán)神經(jīng)網(wǎng)絡(luò)模型的雷達(dá)高分辨率距離像目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
引用本文: 徐彬, 陳渤, 劉宏偉, 金林. 基于注意循環(huán)神經(jīng)網(wǎng)絡(luò)模型的雷達(dá)高分辨率距離像目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
Citation: XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034

基于注意循環(huán)神經(jīng)網(wǎng)絡(luò)模型的雷達(dá)高分辨率距離像目標(biāo)識(shí)別

doi: 10.11999/JEIT161034
基金項(xiàng)目: 

國(guó)家杰出青年科學(xué)基金(61525105),國(guó)家自然科學(xué)基金(61201292, 61322103, 61372132),全國(guó)優(yōu)秀博士學(xué)位論文作者專項(xiàng)資金(FANEDD-201156)

Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition

Funds: 

The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156)

  • 摘要: 針對(duì)雷達(dá)高分辨率距離像(HRRP)數(shù)據(jù)的識(shí)別問(wèn)題,該文利用HRRP生成的時(shí)序特性,提出一種基于循環(huán)神經(jīng)網(wǎng)絡(luò)的注意模型。該模型利用具有記憶功能的循環(huán)神經(jīng)網(wǎng)絡(luò)對(duì)時(shí)域數(shù)據(jù)進(jìn)行編碼,并根據(jù)HRRP中不同距離單元所映射的隱層對(duì)目標(biāo)識(shí)別的重要性,自適應(yīng)地賦予隱層不同的權(quán)值系數(shù),并根據(jù)隱層特征編碼特征進(jìn)行HRRP目標(biāo)識(shí)別。該模型利用了隱藏在HRRP數(shù)據(jù)內(nèi)部的目標(biāo)結(jié)構(gòu)信息,提高了特征的區(qū)分度。實(shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)結(jié)果表明,該方法可以有效地進(jìn)行識(shí)別,在樣本存在一定余度數(shù)據(jù)和樣本偏移的情況下,都能準(zhǔn)確地找出目標(biāo)支撐區(qū)域。
  • 張英軍, 白向輝. 雷達(dá)自動(dòng)目標(biāo)識(shí)別中的HRRP特征提取研究[J]. 系統(tǒng)工程與電子技術(shù), 2007, 29(12): 2047-2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    ZHANG Junying and BAI Xianghui. Study of the HRRP feature extraction in radar automatic target recognition[J]. Systems Engineering and Electronics, 2007, 29(12): 2047- 2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    梁海濤, 張學(xué)禮, 童創(chuàng)明, 等. 基于小波分解與方位角平均HRRP的SVM目標(biāo)識(shí)別方法[J]. 數(shù)據(jù)采集與處理, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    LIANG Haitao, ZHANG Xueli, TONG Chuangming, et al. SVM target identification method based on wavelet decomposition and azimuth average HRRP[J]. Journal of Data Acquisition Processing, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    DU Lan, LIU Hongwei, BAO Zheng, et al. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar Navigation, 2007, 1(1): 18-26. doi: 10.1049/iet-rsn:20050119.
    FENG B, DU L, LIU H W, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 642-645.
    潘勉, 王鵬輝, 杜蘭, 等. 基于TSB-HMM模型的雷達(dá)高分辨距離像目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146.2012.01190.
    PAN Mian, WANG Penghui, DU Lan, et al. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146. 2012.01190.
    PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-17. doi: 10.1109/CIE-Radar.2011.6159624.
    JI S H, LIAO X J, and CARIN L. Adaptive multi-aspect target classification and detection with hidden Markov models[C]. International Conference on Acoustics, Speech and Signal Processing, Montreal, 2004: 125-129.
    GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-8.
    ZAREMBA W and SUTSKEVER I. Recurrent neural network regularization[C]. International Conference on Learning Representations, San Diego, 2015: 1-8.
    SRIVASTAVE N, MANSIMOV E, and SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-9.
    LI J W, LUONG M T, and JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015: 1106-1115.
    CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]. 29th Conference on Neural Information Processing Systems, Barcelona, 2016: 1-9.
    ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
    CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]. 27th Conference on Natural Language Processing Systems, Montreal, 2015: 1-19.
    SU B and LU S J. Accurate scene text recognition based on recurrent neural network[C]. 12th Asian Conference on Computer Vision, Singapore, 2015: 35-48.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2217
  • HTML全文瀏覽量:  280
  • PDF下載量:  524
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-25
  • 刊出日期:  2016-12-19

目錄

    /

    返回文章
    返回