基于注意循環(huán)神經(jīng)網(wǎng)絡(luò)模型的雷達(dá)高分辨率距離像目標(biāo)識(shí)別
doi: 10.11999/JEIT161034
國(guó)家杰出青年科學(xué)基金(61525105),國(guó)家自然科學(xué)基金(61201292, 61322103, 61372132),全國(guó)優(yōu)秀博士學(xué)位論文作者專項(xiàng)資金(FANEDD-201156)
Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition
The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156)
-
摘要: 針對(duì)雷達(dá)高分辨率距離像(HRRP)數(shù)據(jù)的識(shí)別問(wèn)題,該文利用HRRP生成的時(shí)序特性,提出一種基于循環(huán)神經(jīng)網(wǎng)絡(luò)的注意模型。該模型利用具有記憶功能的循環(huán)神經(jīng)網(wǎng)絡(luò)對(duì)時(shí)域數(shù)據(jù)進(jìn)行編碼,并根據(jù)HRRP中不同距離單元所映射的隱層對(duì)目標(biāo)識(shí)別的重要性,自適應(yīng)地賦予隱層不同的權(quán)值系數(shù),并根據(jù)隱層特征編碼特征進(jìn)行HRRP目標(biāo)識(shí)別。該模型利用了隱藏在HRRP數(shù)據(jù)內(nèi)部的目標(biāo)結(jié)構(gòu)信息,提高了特征的區(qū)分度。實(shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)結(jié)果表明,該方法可以有效地進(jìn)行識(shí)別,在樣本存在一定余度數(shù)據(jù)和樣本偏移的情況下,都能準(zhǔn)確地找出目標(biāo)支撐區(qū)域。
-
關(guān)鍵詞:
- 雷達(dá)目標(biāo)識(shí)別 /
- 高分辨距離像 /
- 循環(huán)神經(jīng)網(wǎng)絡(luò) /
- 注意模型
Abstract: To improve the performance of radar High-Resolution Range Profile (HRRP) target recognition, a new attention-based model is proposed based on time domain feature. This architecture encodes the time domain feature which can reveal the correlation inside the target with Recurrent Neural Network (RNN). Then, this model gives a weight to each part and sums the hidden feature with each weight for the final recognition. Experiments based on measured data show that the attention-based model is effective for radar HRRP recognition. Furthermore, the proposed method can still find the support areas even with the removed test data. -
張英軍, 白向輝. 雷達(dá)自動(dòng)目標(biāo)識(shí)別中的HRRP特征提取研究[J]. 系統(tǒng)工程與電子技術(shù), 2007, 29(12): 2047-2053. doi: 10.3321/j.issn:1001-506x.2007.12.012. ZHANG Junying and BAI Xianghui. Study of the HRRP feature extraction in radar automatic target recognition[J]. Systems Engineering and Electronics, 2007, 29(12): 2047- 2053. doi: 10.3321/j.issn:1001-506x.2007.12.012. 梁海濤, 張學(xué)禮, 童創(chuàng)明, 等. 基于小波分解與方位角平均HRRP的SVM目標(biāo)識(shí)別方法[J]. 數(shù)據(jù)采集與處理, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006. LIANG Haitao, ZHANG Xueli, TONG Chuangming, et al. SVM target identification method based on wavelet decomposition and azimuth average HRRP[J]. Journal of Data Acquisition Processing, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006. DU Lan, LIU Hongwei, BAO Zheng, et al. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar Navigation, 2007, 1(1): 18-26. doi: 10.1049/iet-rsn:20050119. FENG B, DU L, LIU H W, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 642-645. 潘勉, 王鵬輝, 杜蘭, 等. 基于TSB-HMM模型的雷達(dá)高分辨距離像目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146.2012.01190. PAN Mian, WANG Penghui, DU Lan, et al. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146. 2012.01190. PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-17. doi: 10.1109/CIE-Radar.2011.6159624. JI S H, LIAO X J, and CARIN L. Adaptive multi-aspect target classification and detection with hidden Markov models[C]. International Conference on Acoustics, Speech and Signal Processing, Montreal, 2004: 125-129. GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-8. ZAREMBA W and SUTSKEVER I. Recurrent neural network regularization[C]. International Conference on Learning Representations, San Diego, 2015: 1-8. SRIVASTAVE N, MANSIMOV E, and SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-9. LI J W, LUONG M T, and JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015: 1106-1115. CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]. 29th Conference on Neural Information Processing Systems, Barcelona, 2016: 1-9. ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]. 27th Conference on Natural Language Processing Systems, Montreal, 2015: 1-19. SU B and LU S J. Accurate scene text recognition based on recurrent neural network[C]. 12th Asian Conference on Computer Vision, Singapore, 2015: 35-48. -
計(jì)量
- 文章訪問(wèn)數(shù): 2217
- HTML全文瀏覽量: 280
- PDF下載量: 524
- 被引次數(shù): 0