一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)檢測(cè)算法

杜蘭 劉彬 王燕 劉宏偉 代慧

杜蘭, 劉彬, 王燕, 劉宏偉, 代慧. 基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
引用本文: 杜蘭, 劉彬, 王燕, 劉宏偉, 代慧. 基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
DU Lan, LIU Bin, WANG Yan, LIU Hongwei, DAI Hui. Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032
Citation: DU Lan, LIU Bin, WANG Yan, LIU Hongwei, DAI Hui. Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032

基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)檢測(cè)算法

doi: 10.11999/JEIT161032
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61271024, 61322103, 61525105),高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金博導(dǎo)類基金(20130203110013),陜西省自然科學(xué)基金(2015JZ016)

Target Detection Method Based on Convolutional Neural Network for SAR Image

Funds: 

The National Natural Science Foundation of China (61271024, 61322103, 61525105), The Foundation for Doctoral Supervisor of China (20130203110013), The Natural Science Foundation of Shaanxi Province (2015JZ016)

  • 摘要: 該文研究了訓(xùn)練樣本不足的情況下利用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)對(duì)合成孔徑雷達(dá)(SAR)圖像實(shí)現(xiàn)目標(biāo)檢測(cè)的問題。利用已有的完備數(shù)據(jù)集來輔助場(chǎng)景復(fù)雜且訓(xùn)練樣本不足的數(shù)據(jù)集進(jìn)行檢測(cè)。首先用已有的完備數(shù)據(jù)集訓(xùn)練得到CNN分類模型,用于對(duì)候選區(qū)域提取網(wǎng)絡(luò)和目標(biāo)檢測(cè)網(wǎng)絡(luò)做參數(shù)初始化;然后利用完備數(shù)據(jù)集對(duì)訓(xùn)練數(shù)據(jù)集做擴(kuò)充;最后通過四步訓(xùn)練法得到候選區(qū)域提取模型和目標(biāo)檢測(cè)模型。實(shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)結(jié)果證明,所提方法在SAR圖像目標(biāo)檢測(cè)中可以獲得較好的檢測(cè)效果。
  • XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 2009: 506-509.
    LENG X, JI K, YANG K, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536-1540. doi: 10.1109 /LGRS.2015.2412174.
    JI Y, ZHANG J, MENG J, et al. A new CFAR ship target detection method in SAR imagery[J]. Acta Oceanologica Sinica, 2010, 29(1): 12-16.
    ELDHUSET K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1010-1019. doi: 10.1109/36.508418.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097-1105.
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 1-9.
    ZHANG X, ZOU J, MING X, et al. Efficient and accurate approximations of nonlinear convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA, 2015: 1984-1992.
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 770-778.
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. European Conference on Computer Vision. Springer International Publishing, Zurich, Swizterland, 2014: 818-833.
    GOODFELLOW I J, WARDE Farley D, MIRZA M, et al. Maxout networks[J]. International Conference on Machine Learning, 2013, 28(3): 1319-1327.
    HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 1026-1034.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014: 580-587.
    GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Advances in Neural Information Processing Systems, Montral, Canada, 2015: 91-99.
    IOFFE S and SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, France, 2015: 448-456.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 3431-3440.
    GAO G, LIU L, ZHAO L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  2403
  • HTML全文瀏覽量:  312
  • PDF下載量:  982
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-24
  • 刊出日期:  2016-12-19

目錄

    /

    返回文章
    返回