New Locally Adaptive Method for InSAR Phase Noise Filtering
Funds:
The National Natural Science Foundation of China (61271293)
-
摘要: 為了有效提高對InSAR干涉相位噪聲的抑制性能并充分保持干涉相位圖細節(jié)信息,該文提出一種基于局部地形相位補償和各向異性高斯濾波函數(shù)(AGF)的自適應復相位濾波方法。該方法首先利用局部頻率估計方法補償?shù)匦蜗辔?,以便于消除局部地形相位對濾波窗口內干涉相位的不利影響。然后,構造了尺度和方向自適應的AGF,并對同分布樣本進行局部加權的方向濾波。這里,AGF尺度隨相干系數(shù)等級自適應變化:在低相干區(qū)域,采用的大尺度AGF能夠充分地抑制相位噪聲;在高相干區(qū)域,采用的小尺度AGF能更好地保持相位細節(jié)信息。AGF方向根據(jù)最大加權相干積累準則確定,以選取同分布的濾波樣本估計中心像素相位值。實驗結果表明,與多種濾波方法相比,該文方法在減少干涉相位圖殘點和保持條紋邊緣等方面均具有更好的性能。Abstract: In order to effectively suppress the noise of InSAR phase images and preserve the detailed fringe information, an adaptive phase filtering method based on local slope compensation and the Anisotropic Gaussian Filter (AGF) is proposed. Firstly, the topography-induced phase is approximately measured by local frequency estimation and removed from the original phase to eliminate the effect of the terrain topography. Secondly, the AGF with adaptive scale and orientation is developed to directionally filter out the noisy phase for the pixels with more homogeneous phase values. The scale of the AGF varies adaptively with the local coherence: a large-scaled AGF can better smooth the noise of low coherence areas, whereas a small-scaled AGF can better preserve the phase details of high coherence areas. Moreover, the orientation angle of the AGF is fast determined to select the identically distributed samples according to the maximum weighted coherent summation principle. The experimental results obtained via simulated and real data show that compared with commonly used filters, the proposed method achieves better performance in terms of residue reduction and fringe preservation.
-
ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. doi: 10.1109/5.838084. LIN X, LI F F, MENG D D, et al. Nonlocal SAR interferometric phase filtering through higher order singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 806-810. doi: 10.1109/LGRS. 2014.2362952. CAO M Y, LI S Q, WANG R, et al. Interferometric phase denoising by median patch-based locally optimal wiener filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1730-1734. doi: 10.1109/LGRS.2015.2422788. LI H Y, SONG H J, WANG R, et al. A modification to the complex-valued MRF modeling filter of interferometric SAR phase[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 681-685. doi: 10.1109/LGRS.2014.2357449. LI J W, LI Z F, BAO Z, et al. Noise filtering of high- resolution interferograms over vegetation and urban areas with a refined nonlocal filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 77-81. doi: 10.1109/LGRS.2014. 2326462. SONG R, GUO H D, LIU G, et al. Improved Goldstein SAR interferogram filter based on adaptive-neighborhood technique[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 140-144. doi: 10.1109/LGRS.2014.2329498. SEYMOUR M S and CUMMING I G. Maximum likelihood estimation for SAR interferometry[C]. International Geoscience and Remote Sensing Symposium, 1994, 4: 2272-2275. doi: 10.1109/IGARSS.1994.399711. GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 40354038. doi: 10.1029/1998GL900033. BARAN I, STEWART M P, KAMPES B M, et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114-2118. doi: 10.1109/TGRS.2003.817212. FU S H, LONG X J, YANG X, et al. Directionally adaptive filter for synthetic aperture radar interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 552-559. doi: 10.1109/TGRS.2012.22. 2911. TROUVE E, NICOLAS J M, and MAITRE H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972. doi: 10.1109/36.729368. CAI B, LIANG D N, and DONG Z. A new adaptive multiresolution noise-filtering approach for SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 266-270. doi: 10.1109/ LGRS.2008.915942. LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. doi: 10.1109/36. 718849. WU N, FENG D Z, and LI J X. A locally adaptive filter of interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 73-77. doi: 10.1109/ LGRS.2005.856703. CHAO C F, CHEN K S, and LEE J S. Refined filtering of interferometric phase from InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5315-5323. doi: 10.1109/TGRS.2012.2234467. SUO Z Y, ZHANG J Q, LI M, et al. Improved InSAR phase noise filter in frequency domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1185-1195. doi: 10.1109/TGRS.2015.2476355. WANG Q S, HUANG H F, YU A X, et al. An efficient and adaptive approach for noise filtering of SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1140-1144. doi: 10.1109/LGRS.2011. 2158289. 李錦偉, 李真芳, 劉艷陽, 等. 一種相干系數(shù)加權的最優(yōu)干涉相位濾波[J]. 西安電子科技大學學報, 2014, 41(2): 25-31. doi: 10.3969/j.issn.1001-2400.2014.02.005. LI J W, LI Z F, LIU Y Y, et al. Coherence-weighted optimum interferometric phase filtering method[J]. Journal of Xidian University, 2014, 41(2): 25-31. doi: 10.3969/ j.issn.1001-2400.2014.02.005. SUO Z Y, LI Z F, and BAO Z. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 771-775. doi: 10.1109/LGRS.2010.2047935. SHUI P L and ZHANG W C. Noise-robust edge detector combing isotropic and anisotropic Gaussian kernels[J]. Pattern Recognition, 2012, 45(2): 806-820. doi: 10.1016/ j.patcog.2011.07.020. -
計量
- 文章訪問數(shù): 1092
- HTML全文瀏覽量: 122
- PDF下載量: 304
- 被引次數(shù): 0