一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種新的干涉相位圖局部自適應濾波方法

薛海偉 馮大政

薛海偉, 馮大政. 一種新的干涉相位圖局部自適應濾波方法[J]. 電子與信息學報, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
引用本文: 薛海偉, 馮大政. 一種新的干涉相位圖局部自適應濾波方法[J]. 電子與信息學報, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
XUE Haiwei, FENG Dazheng. New Locally Adaptive Method for InSAR Phase Noise Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013
Citation: XUE Haiwei, FENG Dazheng. New Locally Adaptive Method for InSAR Phase Noise Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3085-3092. doi: 10.11999/JEIT161013

一種新的干涉相位圖局部自適應濾波方法

doi: 10.11999/JEIT161013
基金項目: 

國家自然科學基金(61271293)

New Locally Adaptive Method for InSAR Phase Noise Filtering

Funds: 

The National Natural Science Foundation of China (61271293)

  • 摘要: 為了有效提高對InSAR干涉相位噪聲的抑制性能并充分保持干涉相位圖細節(jié)信息,該文提出一種基于局部地形相位補償和各向異性高斯濾波函數(shù)(AGF)的自適應復相位濾波方法。該方法首先利用局部頻率估計方法補償?shù)匦蜗辔?,以便于消除局部地形相位對濾波窗口內干涉相位的不利影響。然后,構造了尺度和方向自適應的AGF,并對同分布樣本進行局部加權的方向濾波。這里,AGF尺度隨相干系數(shù)等級自適應變化:在低相干區(qū)域,采用的大尺度AGF能夠充分地抑制相位噪聲;在高相干區(qū)域,采用的小尺度AGF能更好地保持相位細節(jié)信息。AGF方向根據(jù)最大加權相干積累準則確定,以選取同分布的濾波樣本估計中心像素相位值。實驗結果表明,與多種濾波方法相比,該文方法在減少干涉相位圖殘點和保持條紋邊緣等方面均具有更好的性能。
  • ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. doi: 10.1109/5.838084.
    LIN X, LI F F, MENG D D, et al. Nonlocal SAR interferometric phase filtering through higher order singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 806-810. doi: 10.1109/LGRS. 2014.2362952.
    CAO M Y, LI S Q, WANG R, et al. Interferometric phase denoising by median patch-based locally optimal wiener filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1730-1734. doi: 10.1109/LGRS.2015.2422788.
    LI H Y, SONG H J, WANG R, et al. A modification to the complex-valued MRF modeling filter of interferometric SAR phase[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 681-685. doi: 10.1109/LGRS.2014.2357449.
    LI J W, LI Z F, BAO Z, et al. Noise filtering of high- resolution interferograms over vegetation and urban areas with a refined nonlocal filter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 77-81. doi: 10.1109/LGRS.2014. 2326462.
    SONG R, GUO H D, LIU G, et al. Improved Goldstein SAR interferogram filter based on adaptive-neighborhood technique[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 140-144. doi: 10.1109/LGRS.2014.2329498.
    SEYMOUR M S and CUMMING I G. Maximum likelihood estimation for SAR interferometry[C]. International Geoscience and Remote Sensing Symposium, 1994, 4: 2272-2275. doi: 10.1109/IGARSS.1994.399711.
    GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 40354038. doi: 10.1029/1998GL900033.
    BARAN I, STEWART M P, KAMPES B M, et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114-2118. doi: 10.1109/TGRS.2003.817212.
    FU S H, LONG X J, YANG X, et al. Directionally adaptive filter for synthetic aperture radar interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 552-559. doi: 10.1109/TGRS.2012.22. 2911.
    TROUVE E, NICOLAS J M, and MAITRE H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972. doi: 10.1109/36.729368.
    CAI B, LIANG D N, and DONG Z. A new adaptive multiresolution noise-filtering approach for SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 266-270. doi: 10.1109/ LGRS.2008.915942.
    LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. doi: 10.1109/36. 718849.
    WU N, FENG D Z, and LI J X. A locally adaptive filter of interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 73-77. doi: 10.1109/ LGRS.2005.856703.
    CHAO C F, CHEN K S, and LEE J S. Refined filtering of interferometric phase from InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5315-5323. doi: 10.1109/TGRS.2012.2234467.
    SUO Z Y, ZHANG J Q, LI M, et al. Improved InSAR phase noise filter in frequency domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1185-1195. doi: 10.1109/TGRS.2015.2476355.
    WANG Q S, HUANG H F, YU A X, et al. An efficient and adaptive approach for noise filtering of SAR interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1140-1144. doi: 10.1109/LGRS.2011. 2158289.
    李錦偉, 李真芳, 劉艷陽, 等. 一種相干系數(shù)加權的最優(yōu)干涉相位濾波[J]. 西安電子科技大學學報, 2014, 41(2): 25-31. doi: 10.3969/j.issn.1001-2400.2014.02.005.
    LI J W, LI Z F, LIU Y Y, et al. Coherence-weighted optimum interferometric phase filtering method[J]. Journal of Xidian University, 2014, 41(2): 25-31. doi: 10.3969/ j.issn.1001-2400.2014.02.005.
    SUO Z Y, LI Z F, and BAO Z. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 771-775. doi: 10.1109/LGRS.2010.2047935.
    SHUI P L and ZHANG W C. Noise-robust edge detector combing isotropic and anisotropic Gaussian kernels[J]. Pattern Recognition, 2012, 45(2): 806-820. doi: 10.1016/ j.patcog.2011.07.020.
  • 加載中
計量
  • 文章訪問數(shù):  1092
  • HTML全文瀏覽量:  122
  • PDF下載量:  304
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-11-25
  • 刊出日期:  2016-12-19

目錄

    /

    返回文章
    返回