Blind Beamforming Algorithm Based on Sparse Time-frequency Decomposition
Funds:
The National Natural Science Foundation of China (61401469)
-
摘要: 針對(duì)現(xiàn)有盲波束形成算法通用性差,所需采樣數(shù)據(jù)量大等問題,該文提出一種基于稀疏時(shí)頻分解的盲波束形成算法。算法首先將傳統(tǒng)的短時(shí)傅里葉變換轉(zhuǎn)化為稀疏重構(gòu)問題,利用交替分裂Bregman算法進(jìn)行迭代求解。然后利用對(duì)各陣元的接收信號(hào)進(jìn)行稀疏時(shí)頻分解的結(jié)果,結(jié)合聚類和不確定集方法,實(shí)現(xiàn)導(dǎo)向矢量的最優(yōu)估計(jì)。最后利用MVDR算法獲得最優(yōu)權(quán)矢量。該算法無需利用信號(hào)統(tǒng)計(jì)特性,實(shí)現(xiàn)了高效的盲波束形成。仿真實(shí)驗(yàn)結(jié)果表明,該算法所需數(shù)據(jù)量小,迭代步驟易于工程實(shí)現(xiàn),較現(xiàn)有盲波束形成算法輸出性能更優(yōu),適用范圍更廣。
-
關(guān)鍵詞:
- 盲波束形成 /
- 時(shí)頻分解 /
- 稀疏重構(gòu) /
- 導(dǎo)向矢量估計(jì)
Abstract: A novel blind beamforming algorithm based on sparse Time-Frequency Decomposition (TFD) is proposed to solve the problems of existing blind beamforming algorithms: poor universality and the requirement of large amount of sampling data. In the proposed algorithm, the traditional Short-Time Fourier Transform (STFT) is first formulated as a sparse reconstruction problem. Then, a fast and efficient algorithm based on the alternating split Bregman technique is utilized to carry out the optimization. By combining the clustering and uncertainty set methods, the sparse-TFD results of the receiving data at each sensor are used to realize the estimation of Steering Vectors (SV). Finally, the optimal weight coefficients are achieved by substituting the estimated SV into the MVDR beamformer. The proposed algorithm hardly needs any specific statistical property of the receiving signals. Simulation results demonstrate that this algorithm can achieve superior output performance over the existing blind beamforming methods. It needs few snapshots with lower computational cost and has fast convergence rate, which makes the algorithm easy to utilize in practical applications. -
李立欣, 白童童, 張會(huì)生, 等. 改進(jìn)的雙約束穩(wěn)健Capon波束形成算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2014-2019. doi: 10.11999/JEIT151213. LI Lixin, BAI Tongtong, ZHANG Huisheng, et al. Improved double constraint robust capon beamforming algorithm[J]. Journal of Electronics Information Technology, 2016, 38(8): 2014-2019. doi: 10.11999/JEIT151213. SHEN Feng, CHEN Fengfeng, and SONG Jinyang. Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction[J]. IEEE Communications Letters, 2015, 19(9): 1636-1639. doi: 10.1109/LCOMM.2015.2455503. 黃巖, 廖桂生, 李軍, 等. 基于連續(xù)差聯(lián)合陣列的非等距線陣無模糊波束形成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2891-2897. doi: 10.11999/JEIT150321. HUANG Yan, LIAO Guisheng, LI Jun, et al. Non-ambiguity beamforming of nonuniform linear array based on consecutive difference coarray[J]. Journal of Electronics Information Technology, 2015, 37(12): 2891-2897. doi: 10.11999/ JEIT150321. GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881-3885. doi: 10.1109/TSP.2012. 2194289. ZHANG Zhenyu, LIU Wei, LENG Wen, et al. Interference- plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming[J]. IEEE Signal Processing Letters, 2016, 23(1): 121-125. doi: 10.1109/LSP.2015.2504954. COVIELLO C M and SIBUL L H. Blind source separation and beamforming: algebraic technique analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 221-235. doi: 10.1109/TAES.2004.1292155. XU Changjiang, FENG Guangzeng, and KYUNG K S. A modified constrained constant modulus approach to blind adaptive multiuser detection[J]. IEEE Transactions on Communications, 2001, 49(9): 1642-1648. doi: 10.1109/26. 950350. CAI Yunlong, RODRIGO C D L, ZHAO Minjian, et al. Low- complexity variable forgetting factor mechanism for blind adaptive constrained constant modulus algorithms[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 3988-4002. doi: 10.1109/TSP.2012.2199317. SONG Xin, WANG Jinkuan, LI Qiuming, et al. Robust least squares constant modulus algorithm to signal steering vector mismatches[J]. Wireless Personal Communications, 2013, 68(1): 79-94. doi: 10.1007/s11277-011-0440-2. WU Qiang and WONG K M. Blind adaptive beamforming for cyclostatioanary signals[J]. IEEE Transactions on Signal Processing, 1996, 44(11): 2757-2767. doi: 10.1109/78.542182. 趙立權(quán). ICA算法及其在陣列信號(hào)處理中的應(yīng)用研究[D]. [博士論文], 哈爾濱工業(yè)大學(xué), 2009: 1-18. ZHAO Liquan. Research on ICA algorithm and its application in array signal processing[D]. [Ph.D. dissertation], Harbin Engineering University, 2009: 1-18. 趙立權(quán), 楊莘元, 賈雁飛, 等. 針對(duì)任意非高斯信號(hào)的快速固定點(diǎn)盲波束形成方法[J]. 系統(tǒng)工程與電子技術(shù), 2009, 31(7): 1577-1580. doi: 10.3321/j.issn:1001-506X.2009.07.012. ZHAO Liquan, YANG Shenyuan, JIA Yanfei, et al. Fast fixed point blind beamforming algorithm for arbitrary non- gaussian signals[J]. Systems Engineering and Electronics, 2009, 31(7): 1577-1580. doi: 10.3321/j.issn:1001-506X.2009. 07.012. JAFARI M G, WANG Wenwu, CHAMBERS J A, et al. Sequential blind source separation based exclusively on second-order statistics developed for a class of periodic signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1028-1040. doi: 10.1109/TSP.2005.863005. 劉亞奇, 劉成城, 趙擁軍, 等. 基于時(shí)頻分析的多目標(biāo)盲波束形成算法[J]. 物理學(xué)報(bào), 2015, 64(11): 114302. doi: 10.7498/ aps.64.114302. LIU Yaqi, LIU Chengcheng, ZHAO Yongjun, et al. A blind beamforming algorithm for multitarget signals based on time- frequency analysis[J]. Acta Physica Sinica, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302. 李文興, 毛曉軍, 孫亞秀. 一種新的波束形成零陷展寬算法[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2882-2888. doi: 10.3724/SP.J. 1146.2013.02018. LI Wenxing, MAO Xiaojun, and SUN Yaxiu. A new algorithm for null broadening beamforming[J]. Journal of Electronics Information Technology, 2014, 36(12): 2882-2888. doi: 10.3724/SP.J.1146.2013.02018. JOKANOVIC B and AMIN M. Reduced interference sparse time-frequency distributions for compressed observations[J]. IEEE Transactions on Signal Processing, 2015, 63(24): 6698-6709. doi: 10.1109/TSP.2015.2477056. 張賢達(dá). 現(xiàn)代信號(hào)處理 [M]. 第2版, 北京: 清華大學(xué)出版社, 2002: 349-367. ZHANG Xianda. Modern Signal Processing[M]. Second Edition, Beijing: Tsinghua University Press, 2002: 349-367. GHOLAMI A. Sparse time-frequency decomposition and some applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3598-3604. doi: 10.1109/TGRS. 2012.2220144. SCHNASS K and VANDERGHEYNST P. Dictionary preconditioning for greedy algorithms[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1994-2002. doi: 10.1109/ TSP.2007.911494. CHEN Liwen, ZHENG Jiansheng, SU Mingkun, et al. A novel beamforming technique: Introducing a convex constrained optimization and compressed-sensing model[J]. IEEE Antennas and Propagation Magazine, 2016, 58(4): 48-59. doi: 10.1109/MAP.2016.2569476. ZOU Jian, FU Yuli, ZHANG Qiheng, et al. Split Bregman algorithms for multiple measurement vector problem[J]. Multidimensional Systems and Signal Processing, 2015, 26(1): 207-224. doi: 10.1007/s11045-013-0251-6. HUANG Lei, ZHANG Jing, XU Xu, et al. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1643-1650. doi: 10.1109/TSP. 2015.2396002. LI Jian, STOICA P, and WANG Zhisong. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1714. doi: 10.1109/TSP. 2003.812831. LUO Yuhui, WANG Wenwu, CHAMBERS J A, et al. Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques [J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2198-2212. doi: 10.1109/TSP.2006.873367. -
計(jì)量
- 文章訪問數(shù): 1194
- HTML全文瀏覽量: 99
- PDF下載量: 331
- 被引次數(shù): 0