一種用于多目標(biāo)定位的MIMO雷達(dá)快速功率分配算法
doi: 10.11999/JEIT160981
基金項(xiàng)目:
國家自然科學(xué)基金(61601340),國家杰出青年科學(xué)基金(61525105),中國博士后基金(2015M580817, 2016T90890)
Fast Power Allocation Algorithm for Multiple Target Localization in MIMO Radar System
Funds:
The National Natural Science Foundation of China (61601340), The National Science Fund for Distinguished Young Scholars (61525105), The Postdoctoral Science Foundation of China (2015M580817, 2016T90890)
-
摘要: 為了滿足實(shí)際需求,該文提出一種用于多目標(biāo)定位的功率分配算法,實(shí)現(xiàn)MIMO雷達(dá)有限功率的快速優(yōu)化分配。該文首先給出了多目標(biāo)定位誤差的克拉美羅下界,并將其作為代價函數(shù)進(jìn)行功率分配。而后,設(shè)計了一種可應(yīng)用于多目標(biāo)定位功率分配的交替全局優(yōu)化算法,通過搜索Pareto解集來實(shí)現(xiàn)功率的快速分配。最后,仿真結(jié)果表明,所提的算法能快速實(shí)現(xiàn)MIMO雷達(dá)有限功率的優(yōu)化分配,明顯提升多目標(biāo)定位精度。
-
關(guān)鍵詞:
- MIMO雷達(dá)系統(tǒng) /
- 克拉美羅下界 /
- Pareto解集 /
- 交替全局優(yōu)化算法
Abstract: To meet the need of the real application, this paper proposes a power allocation algorithm for multiple target localization, which tries to get the quick optimal allocation of the limited power resources in the MIMO radar. Firstly, Cramr-Rao Lower Bound (CRLB) of the Mean Square Error (MSE) of the multi-target localization is given, and CRLB is used as a cost function to allocate the power resource. Then, an Alternating Global Optimal Algorithm (AGOA) is designed which can be used in power allocation of multi-target localization, the related Pareto sets to achieve the fast allocation of the power resources. Finally, the simulation results show that the AGOA can quickly achieve the optimal allocation of the limited power allocation in MIMO radar, and can significantly enhance the precision of the multiple target localization. -
GODRICH H, HAIMOVICH A M, and BLUM R S. Target localization accuracy gain in MIMO radar based system [J], IEEE Transactions on Information Theory, 2010, 56(6): 2783-2803. VAN TREES H L and BELL K L. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of Waveform Diversity Design, Orlando, FL, USA, 2007: 856-859. GODRICH H, PETROPULU A P, and POOR H V. Cluster allocation schemes for target tracking in multiple radar architectures[C]. Proceeding of Signals, Systems and Computers, Princeton, NJ, USA, 2011, 863-867. GODRICH H, PETROPULU A P, and POOR H V. Resource allocation schemes for target localization in distributed multiple radar architectures[C]. Proceedings of Signal Processing, Aalborg, Denmark, 2010: 23-27. GODRICH H, PETROPULU A, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240. 嚴(yán)俊坤, 劉宏偉, 戴奉周, 等. 基于非線性機(jī)會約束規(guī)劃的多基雷達(dá)系統(tǒng)穩(wěn)健功率分配算法[J]. 電子與信息學(xué)報, 2014, 36(3): 509-515. doi: 10.3724/SP.J.1146.2013.01189. YAN Junkun, LIU Hongwei, and DAI Fengzhou, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics Information Technology, 2014, 36(3): 509-515. doi: 10.3724/SP.J.1146.2013.01189. 時晨光, 汪飛, 周建江, 等. 基于低截獲概率優(yōu)化的組網(wǎng)雷達(dá)系統(tǒng)最優(yōu)功率分配算法[J]. 雷達(dá)學(xué)報, 2014, 3(4): 465-473. SHI Chenguang, WANG Fei, and ZHOU Jianjiang, et al. Optimal power allocation algorithm for radar network systems based on low probability of intercept optimization[J]. Journal of Radars, 2014, 3(4): 465-473. GARCIA N, HAIMOVICH A M, COULON M, et al. Resource allocation in MIMO radar with multiple targets for non-coherent localization[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2656-2666. HERO A O and COCHRAN D. Sensor management: Past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064-3075. VAN TREESH L. Detection, Estimation, and Modulation Theory, Part III[M]. New York, NY: John Wiley and Sons, 1971: 275-352. STOICA P and SELN Y. Cyclic minimizers, majorization techniques, and expectation-maximization algorithm: A refresher[J] IEEE Signal Processing Magazine, 2004, 21(1): 112-114. GODRICH H, PETROPULU A, and POOR H V. A combinatorial optimization framework for subset selection in distributed multiple-radar architecture[C]. Proceedings of Acoustics, Speech and Signal Processing, Piscataway, NJ, USA, 2011: 2796-2799. 張娟, 趙永紅, 張林讓, 等. 網(wǎng)絡(luò)化雷達(dá)協(xié)同抗干擾發(fā)射功率分配方法[P]. CN103941238A. 2014. LIN Jiguan. Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints[J]. IEEE Transactions on Automatic Control, 1976, 21(5): 641-650. KIM I Y and DE WECK O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation [J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158. KAO H Y, CHAN C Y, and WU D J. A multi-objective programming method for solving network DEA[J]. Applied Soft Computing, 2014, 24: 406-413. EHRGOTT M and WIECEK M M. Multiple Criteria Decision Analysis: State of the Art Surveys[M]. New York, NY: Springer 2005: 667-708. -
計量
- 文章訪問數(shù): 1126
- HTML全文瀏覽量: 131
- PDF下載量: 231
- 被引次數(shù): 0