低信噪比條件下寬帶欠定信號(hào)高精度DOA估計(jì)
doi: 10.11999/JEIT160921
-
1.
(空軍預(yù)警學(xué)院 武漢 430019) ②(解放軍94969部隊(duì) 上海 200040)
國(guó)家自然科學(xué)基金(61401504),軍內(nèi)計(jì)劃科研項(xiàng)目(2015XXX),湖北省自然科學(xué)基金(2016CFB288)
High Accuracy DOA Estimation Under Low SNR Conditionfor Wideband Underdetermined Signals
-
1.
(Air Force Early Warning Academy, Wuhan 430019, China)
-
2.
(94969 Unit the PLA, Shanghai 200040, China)
The National Natural Science Foundation of China (61401504), The Military Plan of Scientific Research Project (2015XXX), The Natural Science Foundation of Hubei Province (2016CFB288)
-
摘要: 為提高低信噪比條件下寬帶欠定信號(hào)DOA估計(jì)精度,該文提出基于網(wǎng)格失配迭代最小化稀疏學(xué)習(xí)的寬帶DOA估計(jì)方法。該方法首先對(duì)頻域協(xié)方差矩陣進(jìn)行矢量化處理實(shí)現(xiàn)虛擬陣列擴(kuò)展,將欠定信號(hào)轉(zhuǎn)換為超定信號(hào)。其次利用線性變換濾除含有噪聲項(xiàng)的虛擬陣元,并對(duì)協(xié)方差估計(jì)誤差進(jìn)行了白化處理,抑制了信號(hào)中的干擾項(xiàng)。最后建立了包含不同頻點(diǎn)聯(lián)合稀疏參數(shù)和網(wǎng)格失配參數(shù)的貝葉斯層次架構(gòu),推導(dǎo)了聯(lián)合稀疏參數(shù)、網(wǎng)格失配參數(shù)的最小稀疏表達(dá)式并進(jìn)行了迭代學(xué)習(xí)。較傳統(tǒng)方法,該方法不依賴任何先驗(yàn)信息,更好地抑制了虛擬陣元中的噪聲和干擾,降低了網(wǎng)格失配對(duì)DOA估計(jì)的影響,在低信噪比條件下具有更高的DOA估計(jì)精度和分辨率。仿真實(shí)驗(yàn)驗(yàn)證了該方法的有效性。
-
關(guān)鍵詞:
- 寬帶信號(hào)到達(dá)角估計(jì) /
- 低信噪比條件 /
- 欠定信號(hào) /
- 網(wǎng)格失配 /
- 最小稀疏迭代
Abstract: In order to improve underdetermined wideband signals DOA estimation accuracy under low Signal to Noise Ratio (SNR) condition, an off-grid sparse learning via iterative minimization algorithm is proposed. Firstly, the novel algorithm vectorizes the covariance matrix in frequency domain to realize visual array extension, as a result, underdetermined wideband signals are transformed into overdetermined signals. Then linear transform is used to eliminate the noise contained virtual array elements, whitening process is utilized to the estimation error of covariance matrix, as a result, the interference in signals is suppressed. Finally, a Bayesian structure containing the joint sparsity parameter of different frequencies and off-grid parameter is built, the minimization sparse expressions of joint sparsity parameter and off-grid parameter are deduced and corresponding parameters are learned iteratively. Compared with other methods, the proposed method does not rely on any prior information, suppresses the inference in virtual array elements more efficiently, reduces the effects of off-grid problem, and gets higher DOA estimation accuracy and resolution under low SNR condition. Simulation experiments verify the validity of the novel algorithm. -
ZHANG Yong, HE Peiyu, and WANG Haijiang. Wideband coherent sources localization based on a two-node distributed sensor networks[J]. Signal Processing, 2016, 126(9): 103-110. doi: 10.1016/j.sigpro.2015.10.024. ZHEN Jiaqi and WANG Zhifang. DOA estimation method for wideband signals by block sparse reconstruction[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 20-27. doi: 10.1109/JSEE.2016.00003. 朱立為, 汪亞, 王翔, 等. 空時(shí)頻域中欠定混合條件下的波達(dá)方向估計(jì)[J]. 國(guó)防科技大學(xué)學(xué)報(bào), 2015, 37(5): 149-154. doi: 10.11887/j.cn.201505023. ZHU Liwei, WANG Ya, WANG Xiang, et al. Underdetermined direction of arrival estimation based on spatial time-frequency distributions[J]. Journal of National University of Defense Technology, 2015, 37(5): 149-154. doi: 10.11887/j.cn.201505023. HAN Keyong and NEHORAI Arye. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013, 20(11): 1110-1113. doi: 10.1109/LSP.2013.2281514. SHEN Zhibo, DONG Chunxi, DONG Yangyang, et al. Broadband DOA estimation based on nested arrays[J]. International Journal of Antennas and Propagation, 2015, 2015(3): 1-7. doi: 10.1155/2015/974634. SHEN Qing, LIU Wei, CUI Wei, et al. Low-complexity direction-of-arrival estimation based on wideband co-prime arrays[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2015, 23(9): 1445-1453. doi: 10.1109/TASLP.2015.2436214. CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182-2196. doi: 10.1109/TSP.2011.2112650. HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435-439. doi: 10.1109/LSP.2014.2358084. WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790. PAN Yujian, TAI Ning, and YUAN Naichang. Wideband DOA estimation via sparse Bayesian learning over a Khatri-Rao dictionary[J]. Radioengineering, 2015, 24(2): 552-557. doi: 10.13164/re.2015.0552. 熊坤來(lái), 劉章孟, 柳征, 等. 基于EM算法的寬帶信號(hào)DOA估計(jì)及盲分離[J]. 電子學(xué)報(bào), 2015, 43(10): 2028-2033. doi: 10.3969/j.issn.03722112.2015.10.022. XIONG Kunlai, LIU Zhangmeng, LIU Zheng, et al. Broadband DOA estimation and blind source separation based on EM algorithm[J]. Acta Electronica Sinica, 2015, 43(10): 2028-2033. doi: 10.3969/j.issn.03722112.2015.10.022. XU Luzhou, ZHAO Kexin, LI Jian, et al. Wideband source localization using sparse learning via iterative minimization[J]. Signal Processing, 2013, 93(12): 3504-3514. doi: 10.1016/j.sigpro.2013.04.005. TAN Xing, ROBERTS W, LI Jian, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088-1101. doi: 10.1109/TSP.2010.2096218. 鄧佳欣, 廖桂生, 楊志偉, 等. 基于虛擬孔徑擴(kuò)展的子帶信息融合寬帶DOA估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(2): 245-250. doi: 10.3969/j.issn.1001-506X.2016.02.01. DENG Jiaxin, LIAO Guisheng, YANG Zhiwei, et al. Subband information fusion for wideband DOA estimation based on virtual array[J]. Systems Engineering and Electronics, 2016, 38(2): 245-250. doi: 10.3969/j.issn.1001- 506X.2016.02.01. QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390. doi: 10.1109/TSP.2015.2393838. VAIDYANATHAN P P and PAL Piya. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682. YANG Zai, XIE Lihua, and ZHANG Cishen. Off-Grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378. ZHAO Yonghong, ZHANG Linrang, and GU Yabin. Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation[J]. Electronics Letters, 2016, 52(5): 401-402. doi: 10.1049/el.2015.2931. -
計(jì)量
- 文章訪問數(shù): 1292
- HTML全文瀏覽量: 163
- PDF下載量: 349
- 被引次數(shù): 0