基于目標(biāo)極化特性的人體隱藏危險(xiǎn)品檢測(cè)方法
doi: 10.11999/JEIT160915
基金項(xiàng)目:
國(guó)家973計(jì)劃項(xiàng)目(2015CB755406)
Method of Standoff Detection of Concealed Body-worn Targets Based on Radar Polarization Properties
Funds:
The National 973 Program of China (2015CB 755406)
-
摘要: 為解決在站開(kāi)式距離的人體隱藏危險(xiǎn)品檢測(cè)問(wèn)題,利用目標(biāo)對(duì)雷達(dá)回波的退極化現(xiàn)象實(shí)現(xiàn)對(duì)槍支等金屬物的遠(yuǎn)距離檢測(cè)。通過(guò)測(cè)量待測(cè)對(duì)象的雷達(dá)的不同極化方向的回波并計(jì)算出檢測(cè)參量,就可以據(jù)此判斷待測(cè)對(duì)象是否攜帶有隱藏危險(xiǎn)品。為驗(yàn)證該方法有效性,設(shè)計(jì)并研制了一套140 GHz寬帶極化雷達(dá),并進(jìn)行了實(shí)驗(yàn)測(cè)量。實(shí)驗(yàn)結(jié)果表明:一方面,對(duì)于槍支,或者簡(jiǎn)易爆炸物等退極化效應(yīng)顯著的目標(biāo),系統(tǒng)具有較好的檢測(cè)效果;另一方面,對(duì)于退極化效應(yīng)不明顯的目標(biāo)的檢測(cè)以及檢測(cè)距離的增加會(huì)導(dǎo)致系統(tǒng)的虛警和漏警概率增大, 從而降低檢測(cè)性能。 通過(guò)增大發(fā)射天線尺寸可以改善檢測(cè)效果,并且通過(guò)檢測(cè)參量的優(yōu)化可以提高同等距離下檢測(cè)性能。
-
關(guān)鍵詞:
- 隱藏危險(xiǎn)品檢測(cè) /
- 站開(kāi)式非成像 /
- 退極化效應(yīng) /
- 寬帶極化雷達(dá)
Abstract: In order to detect concealed body-worn weapon at standoff range, the depolarization effect of radar targets is utilized. By measuring radar echoes of the object at different polarization directions, detection parameters can be obtained and whether the human is carrying concealed weapon or not can be decided. In order to verify the effectiveness of the method, a 140 GHz broadband polarized radar is designed and used to carry out experimental measurements. The experimental results show that, on the one hand, for the firearms, or Improvised Explosive Devices (IED) and other targets that have significant depolarization effect, the system has a better detection effect; on the other hand, the detection of targets with less depolarization effect and the increase of detection distance will result in the increase of the probability of false alarm and probability of leakage alarm and deterioration of the system performance. The system performance can be improved by increasing the size of the transmitting antenna, and the detection performance at the same distance can also be improved by optimizating the detection parameters. -
KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al. Passive imaging of concealed objects in terahertz and long-wavelength infrared[J]. Applied Optics, 2015, 54(13): 3826-3833. doi: 10.1364/AO.54.003826. ARTTU L, LEIF G, MARKUS G, et al. Enhancement of real- time THzimaging system based on 320240 uncooled microbolometer detector[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(10): 965-976. doi: 10.1007/ s10762-016-0287-4. GROSSMAN E N, GORDAN J, NOVOTNY D, et al. Terahertz active and passive imaging[C]. Proceedings of 8th European Conference on Antennas and Propagation (EuCAP), Netherlands, 2014: 2221-2225. FARSAEE A, SEYEDTABLEBI J, MOKHTARI F, et al. Improved two-dimensional millimeter-waveimaging for concealed weapon detection through partial fourier sampling [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(3): 267-280. doi: 10.1007/s10762-015-0223-z. SHEEN D M, HALL T E, MCMAKIN D L, et al. Three- dimensional radar imaging techniques and systems for near- field applications[J]. SPIE, 2016, 9829. doi: 10.1117/12. 2229235. TEKAVEC P F, KOVZLOV V G, and MCNEE I. Real time THz imaging based on frequency up-conversion[C]. Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. doi: 10.1109/IRMMW-THz.2015.7327921. KAPILEVICH B Y, HARMER S W, and BOWRING N J. Non-Imaging Microwave and Millimeter-Wave Sensors for Concealed Object Detection[M]. USA: CRC Press, 2015: 1-210. KAPILEVICH B Y and LIPELES A. Hand-held device and method for detecting concealed weapons and hidden objects [P]. US, Patent, WO 2007148327A2, 2007-6-18. DOUGLASS R J, GORMAN J D, and BURNS T J. System and method for standoff detection of human carried explosives[P]. US, Patent, US20080129581, 2005-10-11. HAUSNER Jerry and WEST Jonathan. Object detection method and apparatus[P]. US, Patent, US20070052576, 2007- 5-8 . ANDREWS D A, HARMER S W, BOWRING N J, et al. Active millimeter wave sensor for standoff concealed threat detection[J]. IEEE Sensors Journal, 2013, 13(12): 4948-4954. doi: 10.1109/JSEN.2013.2273487. 保錚, 邢孟道, 王彤. 雷達(dá)成像技術(shù)[M]. 北京, 電子工業(yè)出版社, 2005: 19-44. BAO Zheng, XING Mengdao, and WANG Tong. Technologies of Radar Imaging[M]. Beijing: Publishing House of Electronics Industry, 2005: 19-44. 劉杰, 張健, 蔣均, 等. D波段功率放大器設(shè)計(jì)[J]. 強(qiáng)激光與粒子束, 2016, 28(2): 28023102-1-28023102-4. doi: 10.11884/ HPLPB201628.023102. LIU Jie, ZHANG Jian, JIANG Jun, et al. Design of D-band power amplifier[J]. High Power Laser and Particle Beams, 2016, 28(2): 28023102-1-28023102-4. doi: 10.11884/ HPLPB201628.023102. 王成, 鄧賢進(jìn), 肖仕偉. 基于肖特基二極管的140 GHz次諧波混頻器[J]. 信息與電子工程, 2011, 9(6): 713-717. doi: 1672- 2892(2011)06-0713-05. WANG Cheng, DENG Xianjin, and XIAO Shiwei. 140 GHz sub-harmonic mixer based on Schottky diode[J]. Information and Electronic Engineering, 2011, 9(6): 713-717, doi: 1672- 2892(2011)06-0713-05. SKOLNIK Merrill. Radar Handbook[M]. 3rd Ed., New York, USA: McGraw Hill, Inc., 2008: 9-10. -
計(jì)量
- 文章訪問(wèn)數(shù): 1326
- HTML全文瀏覽量: 105
- PDF下載量: 339
- 被引次數(shù): 0