一種具有最優(yōu)保證特性的貝葉斯可能性聚類方法
doi: 10.11999/JEIT160908
-
2.
(江南大學(xué)數(shù)字媒體學(xué)院 無錫 214122) ②(湖北交通職業(yè)技術(shù)學(xué)院交通信息學(xué)院 武漢 430079)
國家自然科學(xué)基金(61572236),江蘇省杰出青年基金(BK20140001),江蘇省自然科學(xué)基金(BK20151299)
Bayesian Possibilistic Clustering Method with Optimality Guarantees
-
2.
(School of Digital Media, Jiangnan University, Wuxi 214122, China)
The National Natural Science Foundation of China (61572236), Jiangsu Province Outstanding Youth Fund (BK20140001), Natural Science Foundation of Jiangsu Province (BK20151299)
-
摘要: 該文結(jié)合概率理論和可能性理論,提出一種具有最優(yōu)保證特性的貝葉斯可能性聚類新方法。首先,將未知隸屬度和聚類中心作為隨機變量,為每個隨機變量選擇一個合適的概率分布,提出貝葉斯可能性聚類模型;在此基礎(chǔ)上,基于貝葉斯推理和和蒙特卡洛采樣方法,通過最大后驗概率框架求解貝葉斯可能性聚類模型中的未知參數(shù),從而提出一種具有最優(yōu)保證特性的貝葉斯可能性聚類新方法。并對算法收斂性、算法復(fù)雜度等方面作了理論探討。在合成數(shù)據(jù)集和真實數(shù)據(jù)集上的實驗表明,所提算法擴展了傳統(tǒng)可能性聚類性能,改進了聚類結(jié)果。Abstract: A novel Bayesian possibilistic clustering method with optimality guarantees based on probability theory and possibilistic theory is proposed. First, the unknown membership degree and cluster center are represented as random variables. Given the specific constraints and uncertainty associated with each random variable, an appropriate probability distribution for each random variable is selected and the Bayesian possibilistic clustering model is proposed. On this basis, a novel Bayesian possibilistic clustering method with the optimal guarantee properties is propsed based on Bayesian theory and Monte Carlo sampling method using a Maximum-A-Posteriori (MAP) framework. Then, the convergence of the algorithm and the complexity of the algorithm are discussed. Experimental results on synthetic and real data sets show that the proposed method extends the traditional possibilistic clustering performance, and improves the clustering results.
-
BARNI M, CAPPELLINI V, and MECOCCI A. Comments on a possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393-396. PAL N R, PAL K, and BEZDEK J C. A mixed c-means clustering model[C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 1997: 11-21. PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517530. doi: 10.1109/tfuzz. 2004.840 099. KRISHNAPURAM R and KELLER J M. The possibilistic c-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385-393. ZHANG J S and LEUNG Y W. Improved possibilistic c-means clustering algorithms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(2): 209-217. doi: 10.1109/tfuzz. 2004.825079. YANG M S and LAI C Y. A robust automatic merging possibilistic clustering method[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1): 26-41. doi: 10.1109/tfuzz.2010. 2077640. 范九倫, 裴繼紅. 基于可能性分布的聚類有效性[J]. 電子學(xué)報, 1998, 26(4): 113-115. FAN Jiulun and PEI Jihong. Cluster validity based on possibilistic distribution[J]. Acta Electronica Sinica, 1998, 26(4): 113-115. ZARANDI M H F, AVAZBEIGI M, and ANSSARI M H. New possibilistic noise rejection clustering algorithm with simulated annealing[C]. 2011 Annual Meeting of the North American Fuzzy Information Processing Society, Canada, 2011: 1-5. doi: 10.1109/nafips.2011.5752004. DENG Z H, CAO L B, JIANG Y Z, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/tfuzz.2014.2328014. 夏建明, 楊俊安, 陳功. 參數(shù)自適應(yīng)調(diào)整的稀疏貝葉斯重構(gòu)算法[J]. 電子與信息學(xué)報, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146.2013.00629. XIA Jianming, YANG Junan, and CHEN Gong. Bayesian sparse reconstruction with adaptive parameters adjustment[J]. Journal of Electronics Information Technology, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146. 2013.00629. 王峰, 向新, 易克初, 等. 基于隱變量貝葉斯模型的稀疏信號恢復(fù)[J]. 電子與信息學(xué)報, 2015, 37(1): 97-102. doi: 10.11999/ JEIT140169. WANG Feng, XIANG Xin, YI Kechu, et al. Sparse signals recovery based on latent variable Bayesian models[J]. Journal of Electronics Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169. WANG S T, CHUNG K F, SHEN H B, et al. Note on the relationship between probabilistic and fuzzy clustering[J]. Soft Computing, 2004, 8(5): 366-369. doi: 10.1007/s00500- 003-0309-8. YU L, WEI C, and ZHENG G. Adaptive Bayesian estimation with cluster structured sparsity[J]. IEEE Signal Processing Letters, 2015, 22(12): 2309-2313. doi: 10.1109 /lsp.2015. 2477440. GLENN T C, ZARE A, and GADER P D. Bayesian fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1545-1561. doi: 10.1109/tfuzz.2014.2370676. ZARINBAL M, ZARANDI M H F, and TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information Sciences, 2014, 260: 74-97. doi: 10.1016/j.ins.2013.11.004. BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers Geosciences, 1984, 10(2-3): 191203. KRISHNAPURAM R and KELLER J M. A Possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98-110. ANDRIEU C, DE FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50(1): 5-43. doi: 10.1023/A:1020281327116. CHIB S and GREENBERG E. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335. PLUMMER M, BEST N, COWLES K, et al. CODA: Convergence diagnosis and output analysis for MCMC[J]. R News, 2006, 6(1): 7-11. 朱崇軍. MCMC樣本確定的后驗密度的收斂性[J]. 數(shù)學(xué)雜志, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019. ZHU Chongjun. On the convergences of a posteriori density determined by MCMC samplers[J]. Journal of Math ematics, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019. ROBERTS G O and SMITH A F M. Simple conditions for the convergence of the Gibbs sampler and Metropolis- Hastings algorithms[J]. Stochastic Processes and Their Applications, 1994, 49(2): 207216. ZELLNER A and MIN C K. Gibbs sampler convergence criteria[J]. Journal of the American Statistical Association, 1995, 90(431): 921-927. LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. doi: 10.1109/ tpami.2010.70. -
計量
- 文章訪問數(shù): 970
- HTML全文瀏覽量: 124
- PDF下載量: 428
- 被引次數(shù): 0