一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種具有最優(yōu)保證特性的貝葉斯可能性聚類方法

劉解放 王士同 王駿 鄧趙紅

劉解放, 王士同, 王駿, 鄧趙紅. 一種具有最優(yōu)保證特性的貝葉斯可能性聚類方法[J]. 電子與信息學(xué)報, 2017, 39(7): 1554-1562. doi: 10.11999/JEIT160908
引用本文: 劉解放, 王士同, 王駿, 鄧趙紅. 一種具有最優(yōu)保證特性的貝葉斯可能性聚類方法[J]. 電子與信息學(xué)報, 2017, 39(7): 1554-1562. doi: 10.11999/JEIT160908
LIU Jiefang, WANG Shitong, WANG Jun, DENG Zhaohong. Bayesian Possibilistic Clustering Method with Optimality Guarantees[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1554-1562. doi: 10.11999/JEIT160908
Citation: LIU Jiefang, WANG Shitong, WANG Jun, DENG Zhaohong. Bayesian Possibilistic Clustering Method with Optimality Guarantees[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1554-1562. doi: 10.11999/JEIT160908

一種具有最優(yōu)保證特性的貝葉斯可能性聚類方法

doi: 10.11999/JEIT160908
基金項目: 

國家自然科學(xué)基金(61572236),江蘇省杰出青年基金(BK20140001),江蘇省自然科學(xué)基金(BK20151299)

Bayesian Possibilistic Clustering Method with Optimality Guarantees

Funds: 

The National Natural Science Foundation of China (61572236), Jiangsu Province Outstanding Youth Fund (BK20140001), Natural Science Foundation of Jiangsu Province (BK20151299)

  • 摘要: 該文結(jié)合概率理論和可能性理論,提出一種具有最優(yōu)保證特性的貝葉斯可能性聚類新方法。首先,將未知隸屬度和聚類中心作為隨機變量,為每個隨機變量選擇一個合適的概率分布,提出貝葉斯可能性聚類模型;在此基礎(chǔ)上,基于貝葉斯推理和和蒙特卡洛采樣方法,通過最大后驗概率框架求解貝葉斯可能性聚類模型中的未知參數(shù),從而提出一種具有最優(yōu)保證特性的貝葉斯可能性聚類新方法。并對算法收斂性、算法復(fù)雜度等方面作了理論探討。在合成數(shù)據(jù)集和真實數(shù)據(jù)集上的實驗表明,所提算法擴展了傳統(tǒng)可能性聚類性能,改進了聚類結(jié)果。
  • BARNI M, CAPPELLINI V, and MECOCCI A. Comments on a possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393-396.
    PAL N R, PAL K, and BEZDEK J C. A mixed c-means clustering model[C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 1997: 11-21.
    PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517530. doi: 10.1109/tfuzz. 2004.840 099.
    KRISHNAPURAM R and KELLER J M. The possibilistic c-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385-393.
    ZHANG J S and LEUNG Y W. Improved possibilistic c-means clustering algorithms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(2): 209-217. doi: 10.1109/tfuzz. 2004.825079.
    YANG M S and LAI C Y. A robust automatic merging possibilistic clustering method[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1): 26-41. doi: 10.1109/tfuzz.2010. 2077640.
    范九倫, 裴繼紅. 基于可能性分布的聚類有效性[J]. 電子學(xué)報, 1998, 26(4): 113-115.
    FAN Jiulun and PEI Jihong. Cluster validity based on possibilistic distribution[J]. Acta Electronica Sinica, 1998, 26(4): 113-115.
    ZARANDI M H F, AVAZBEIGI M, and ANSSARI M H. New possibilistic noise rejection clustering algorithm with simulated annealing[C]. 2011 Annual Meeting of the North American Fuzzy Information Processing Society, Canada, 2011: 1-5. doi: 10.1109/nafips.2011.5752004.
    DENG Z H, CAO L B, JIANG Y Z, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/tfuzz.2014.2328014.
    夏建明, 楊俊安, 陳功. 參數(shù)自適應(yīng)調(diào)整的稀疏貝葉斯重構(gòu)算法[J]. 電子與信息學(xué)報, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146.2013.00629.
    XIA Jianming, YANG Junan, and CHEN Gong. Bayesian sparse reconstruction with adaptive parameters adjustment[J]. Journal of Electronics Information Technology, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146. 2013.00629.
    王峰, 向新, 易克初, 等. 基于隱變量貝葉斯模型的稀疏信號恢復(fù)[J]. 電子與信息學(xué)報, 2015, 37(1): 97-102. doi: 10.11999/ JEIT140169.
    WANG Feng, XIANG Xin, YI Kechu, et al. Sparse signals recovery based on latent variable Bayesian models[J]. Journal of Electronics Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169.
    WANG S T, CHUNG K F, SHEN H B, et al. Note on the relationship between probabilistic and fuzzy clustering[J]. Soft Computing, 2004, 8(5): 366-369. doi: 10.1007/s00500- 003-0309-8.
    YU L, WEI C, and ZHENG G. Adaptive Bayesian estimation with cluster structured sparsity[J]. IEEE Signal Processing Letters, 2015, 22(12): 2309-2313. doi: 10.1109 /lsp.2015. 2477440.
    GLENN T C, ZARE A, and GADER P D. Bayesian fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1545-1561. doi: 10.1109/tfuzz.2014.2370676.
    ZARINBAL M, ZARANDI M H F, and TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information Sciences, 2014, 260: 74-97. doi: 10.1016/j.ins.2013.11.004.
    BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers Geosciences, 1984, 10(2-3): 191203.
    KRISHNAPURAM R and KELLER J M. A Possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98-110.
    ANDRIEU C, DE FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50(1): 5-43. doi: 10.1023/A:1020281327116.
    CHIB S and GREENBERG E. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
    PLUMMER M, BEST N, COWLES K, et al. CODA: Convergence diagnosis and output analysis for MCMC[J]. R News, 2006, 6(1): 7-11.
    朱崇軍. MCMC樣本確定的后驗密度的收斂性[J]. 數(shù)學(xué)雜志, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019.
    ZHU Chongjun. On the convergences of a posteriori density determined by MCMC samplers[J]. Journal of Math ematics, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019.
    ROBERTS G O and SMITH A F M. Simple conditions for the convergence of the Gibbs sampler and Metropolis- Hastings algorithms[J]. Stochastic Processes and Their Applications, 1994, 49(2): 207216.
    ZELLNER A and MIN C K. Gibbs sampler convergence criteria[J]. Journal of the American Statistical Association, 1995, 90(431): 921-927.
    LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. doi: 10.1109/ tpami.2010.70.
  • 加載中
計量
  • 文章訪問數(shù):  970
  • HTML全文瀏覽量:  124
  • PDF下載量:  428
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-09-09
  • 修回日期:  2017-02-10
  • 刊出日期:  2017-07-19

目錄

    /

    返回文章
    返回