一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于多尺度空間表征的生物啟發(fā)目標(biāo)指引導(dǎo)航模型

李偉龍 吳德偉 盧虎 杜佳 周陽(yáng)

李偉龍, 吳德偉, 盧虎, 杜佳, 周陽(yáng). 基于多尺度空間表征的生物啟發(fā)目標(biāo)指引導(dǎo)航模型[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
引用本文: 李偉龍, 吳德偉, 盧虎, 杜佳, 周陽(yáng). 基于多尺度空間表征的生物啟發(fā)目標(biāo)指引導(dǎo)航模型[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
Citation: LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892

基于多尺度空間表征的生物啟發(fā)目標(biāo)指引導(dǎo)航模型

doi: 10.11999/JEIT160892
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61273048, 61473308, 61603409)

Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation

Funds: 

The National Natural Science Foundation of China (61273048, 61473308, 61603409)

  • 摘要: 為實(shí)現(xiàn)運(yùn)行體空間認(rèn)知和自主導(dǎo)航,借鑒生物導(dǎo)航機(jī)理,該文提出基于多尺度空間表征的生物啟發(fā)目標(biāo)指引導(dǎo)航模型。首先構(gòu)建不同尺度位置細(xì)胞圖編碼空間環(huán)境,采用高斯模型模擬位置細(xì)胞放電率,并將其作為Q學(xué)習(xí)的狀態(tài)輸入,然后采用模擬退火方法完成行為選擇,通過(guò)多次探索學(xué)習(xí)使運(yùn)行體能夠正確規(guī)劃出一條從起始點(diǎn)到目標(biāo)點(diǎn)的最短路徑。仿真結(jié)果表明,該方法用于目標(biāo)指引導(dǎo)航是可行的,相對(duì)于單尺度位置細(xì)胞空間認(rèn)知模型,該方法不但符合多尺度空間表征的生物學(xué)依據(jù),而且學(xué)習(xí)速度更快。在存在障礙物的環(huán)境中,能夠順利完成目標(biāo)指引導(dǎo)航任務(wù),并且當(dāng)障礙物發(fā)生變化時(shí)具有較好的適應(yīng)性。
  • ALEJANDRA B, GONZALO T, MARTIN L, et al. Learning spatial localization: From rat studies to computational models of the hippocampus[J]. Spatial Cognition and Computation: An Interdisciplinary Journal, 2015, 15: 27-59. doi: 10.1080/ 13875868.2014.961602.
    FABIAN C and BURGESS N. The Cognitive architecture of spatial navigation: Hippocampal and striatal contributions[J]. Neuron, 2015, 88(1): 64-77. doi: 10.1016/j.neuron.2015.09. 021.
    RAYMOND P K and EDMUND T R. A computational theory of hippocampal function, and tests of the theory: New developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48(1): 92-147. doi: 10.1016/j.neubiorev.2014.11.009.
    TOLMAN E C. Cognitive maps in rats and men[J]. Psychological Review, 1948, 55(1): 189-208. doi: 10.1037/ h0061626.
    OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1.
    OKEEFE J and BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0.
    BJERKNES T, LANGSTON R, KRUGE I, et al. Coherence among head direction cells before eye opening in rat pups[J]. Current Biology, 2015, 25(1): 103-108. doi: 10.1016/j.cub. 2014.11.009.
    GIOCOMO L M, STENSOLA T, BONNEVIE T, et al. Topography of head direction cells in medial entorhinal cortex[J]. Current Biology, 2014, 24(3): 252-262. doi: 10.1016 /j.cub.2013.12.002.
    HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721.
    DANIEL B, CASWELL B, DANIEL M, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507-520. doi: 10.1016/ j.neuron.2015.07.006.
    SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex[J]. Science, 2009, 322(5909): 1865-1868. doi: 10.1126/ science.1166466.
    EMILIO K, JAMES E C, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523(7561): 419-424. doi: 10.1038/nature14622.
    TAVARES R M, MENDELSOHN A, GROSSMAN Y, et al. A map for social navigation in the human brain[J]. Neuron, 2015, 87(1): 231-243. doi: 10.1016/j.neuron.2015.06.011.
    IOANNIS K, KONSTANTINOS C, ANTONIOS G, et al. Robot navigation via spatial and temporal coherent semantic maps[J]. Engineering Applications of Artificial Intelligence, 2016, 48(1): 173-187. doi: 10.1016/j.engappai.2015.11.004.
    曾毅, 劉成林, 譚鐵牛. 類(lèi)腦智能研究的回顧與展望[J]. 計(jì)算機(jī)學(xué)報(bào), 2016, 39(1): 212-222. doi: 10.11897/SP.J.1016.2016. 00212.
    ZENG Yi, LIU Chenglin, and TAN Tieniu. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computer, 2016, 39(1): 212-222. doi: 10.11897/SP. J.1016.2016.00212.
    李偉龍, 吳德偉, 周陽(yáng), 等. 基于生物位置細(xì)胞放電機(jī)理的空間位置表征方法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    LI Weilong, WU Dewei, Zhou Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    SPIERS H J and BARRY C. Neural systems supporting navigation[J]. Current Opinion in Behavioral Sciences, 2015, 1(1): 47-55. doi: 10.1016/j.cobeha.2014.08.005.
    ERDEM U M, MILFORD M J, and HASSELMO M E. A hierarchical model of goal directed navigation selects trajectories in a visual environment[J]. Neurobiology of Learning and Memory, 2015, 117(1): 109-121. doi: 10.1016/ j.nlm.2014.07.003.
    GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2): 94-108. doi: 10.1038/nrn3888.
    KEINATH A T, WANG M E, WANN E G, et al. Precise spatial coding is preserved along the longitudinal hippocampal axis[J]. Hippocampus, 2014, 24(12): 1533-1548. doi: 10.1002/hipo.22333.
    LONG L L, BUNCE J G, and CHROBAK J J. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus[J]. Frontiers in Systems Neuroscience, 2015, 37(9): 1-14. doi: 10.3389/fnsys.2015. 00037.
    ROBITSEK R J, WHITE J A, and EICHENBAUM H. Place cell activation predicts subsequent memory[J]. Behavioural Brain Research, 2013, 254(4): 65-72. doi: 10.1016/j.bbr.2012. 12.034.
    KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 43(5): 1141-1153. doi: 10.1109/ TSMCA.2012.2227719.
    CUPERLIER N, QUOY M, and GAUSSIER P. Neurobiologically inspired mobile robot navigation and planning[J]. Frontiers in Neurorobotics, 2007, 1(3): 1-15. doi: 10.3389/neuro.12.003.2007.
    GIOVANNI P, MATTHIJS A A, MEER V D, et al. Internally generated sequences in learning and executing goal-directed behavior[J]. Trends in Cognitive Sciences, 2014, 18(12): 647-657. doi: 10.1016/j.tics.2014.06.011.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1256
  • HTML全文瀏覽量:  148
  • PDF下載量:  231
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-09-02
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-06-19

目錄

    /

    返回文章
    返回