40 nm CMOS工藝下的低功耗容軟錯(cuò)誤鎖存器
doi: 10.11999/JEIT160889
-
1.
(合肥工業(yè)大學(xué)電子科學(xué)與應(yīng)用物理學(xué)院 合肥 230009) ②(合肥工業(yè)大學(xué)計(jì)算機(jī)與信息學(xué)院 合肥 230009)
國(guó)家自然科學(xué)基金(61574052, 61371025, 61474036, 61674048),安徽省自然科學(xué)基金(1608085MF149)
Low Power Soft Error Tolerant Latch for 40 nm CMOS Technology
-
1.
(School of Electronic Science &
-
2.
(School of Computer &
The National Natural Science Foundation of China (61574052, 61371025, 61474036, 61674048), The Natural Science Foundation of Anhui Province (1608085MF149)
-
摘要: 為了降低集成電路的軟錯(cuò)誤率,該文基于時(shí)間冗余的方法提出一種低功耗容忍軟錯(cuò)誤鎖存器。該鎖存器不但可以過濾上游組合邏輯傳播過來的SET脈沖,而且對(duì)SEU完全免疫。其輸出節(jié)點(diǎn)不會(huì)因?yàn)楦吣芰W愚Z擊而進(jìn)入高阻態(tài),所以該鎖存器能夠適用于門控時(shí)鐘電路。SPICE仿真結(jié)果表明,與同類的加固鎖存器相比,該文結(jié)構(gòu)僅僅增加13.4%的平均延時(shí),使得可以過濾的SET脈沖寬度平均增加了44.3%,并且功耗平均降低了48.5%,功耗延時(shí)積(PDP)平均降低了46.0%,晶體管數(shù)目平均減少了9.1%。
-
關(guān)鍵詞:
- 軟錯(cuò)誤 /
- 單粒子翻轉(zhuǎn) /
- 單粒子瞬態(tài) /
- 加固鎖存器
Abstract: To reduce the soft error rate of the circuit, this paper proposes a low power soft error tolerant latch based on time redundancy technology. The proposed latch can fully tolerate the Single Event Upset (SEU) when particles strike on internal nodes. Furthermore, it can efficiently mask the input Single Event Transient (SET). Its output node will not enter a high impedance state when a particle strikes on internal nodes, so the proposed latch can be applied to clock-gating circuits. Detailed SPICE simulations are done to evaluate the proposed latch circuit and previous latch circuits designed in the literatures. Compared with other soft error tolerant latches, the proposed latch introduces 13.4% delay overhead on average. While it can achieve 44.3% increase in filterable SET pulse width, 48.5% reduction in power, 46.0% reduction in Power Delay Product (PDP), and 9.1% reduction in transistor numbers on average.-
Key words:
- Soft error /
- Single Event Upset (SEU) /
- Single Event Transient (SET) /
- Hardened latch
-
ROBERT L. S. Porting and scaling strategies for nanoscale CMOS RHBD[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(12): 2856-2863. doi: 10.1109/TCSI.2015.2495779. 黃正峰, 陳凡, 蔣翠云, 等. 基于時(shí)序優(yōu)先的電路容錯(cuò)混合加固方案[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 234-240. doi: 10.3724/SP.J.1146.2013.00449. HUANG Zhengfeng, CHEN Fan, JIANG Cuiyun, et al. A hybrid hardening strategy for circuit soft-error-tolerance based on timing priority[J]. Journal of Electronics Information Technology, 2014, 36(1): 234-240. doi: 10.3724/ SP.J.1146.2013.00449. ARTOLA L, GAILLARDIN M. HUBERT G, et al. Modeling single event transients in advanced devices and ICs[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1528-1539. doi: 10.1109/TNS.2015.2432271. VRONIQUE F C, LLOYD W M, and PASCAL G. Single event transients in digital CMOSA review[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1767-1790. doi: 10.1109/TNS.2013.2255624. NEALE A and SACHDEV M. Neutron radiation induced soft error rates for an adjacent-ECC protected SRAM in 28 nm CMOS[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1912-1917. doi: 10.1109/TNS.2016.2547963. NEALE A, JONKMAN M, and SACHDEV M. Adjacent- MBU-tolerant SECDED-TAEC-yAED codes for embedded SRAMs[J]. IEEE Transactions on Circuits and System-II Express Brifs, 2015, 62(4): 387-391. doi: 10.1109/TCSII.2014. 2368262. CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron cmos technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874-2878. doi: 10.1109/23.556880. CASEY M C, BHUVA B L, BLACK J D, et al. HBD using cascade-voltage switch logic gates for SET tolerant digital designs[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2510-2515. doi: 10.1109/TNS.2005.860715. SASAKI Y, NAMBA K, and ITO H. Circuit and latch capable of masking soft errors with Schmitt trigger[J]. Journal of Electronic Testing, 2008, 24(1~3): 11-19. doi: 10.1007/s10836-007-5034-2. NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405-418. doi: 10.1109/TDMR.2005.855790. REN Yi, CHEN Li, and BI Jinshun. An RHBD bandgap reference utilizing single event transient isolation technique[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1927-1933. doi: 10.1109/TNS.2016.2554104. MAVIS D G and EATON P H. Soft error rate mitigation techniques for modern microcircuits[C]. Proceedings of 2002 IEEE International Reliability Physics Symposium, Dallas, TX, USA, 2002: 216-225. ZHANG M, MITRA S, MAK T M, et al. Sequential element design with built-in soft error resilience[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14(12): 1368-1378. doi: 10.1109/TVLSI.2006.887832. LIN S, KIM Y B, and LOMBARDI F. Soft-error hardening designs of nanoscale cmos latches[C]. Proceedings of 27th IEEE VLSI Test Symposium, Santa Cruz, CA, USA, 2009: 41-46. QI C, XIAO L, GUO J, et al. Low cost and highly reliable radiation hardened latch design in 65 nm CMOS technology [J]. Microelectronics Reliability, 2015, 55(6): 863-872 . doi: 10.1016/j.microrel.2015.03.014. OMANA M, ROSSI D, and METRA C. Latch susceptibility to transient faults and new hardening approach[J]. IEEE Transactions on Computers, 2007, 56(9): 1255-1268. doi: 10. 1109/TC.2007.1070. HOSSEIN K A and VOJIN G O. Low-power soft error hardened latch[J]. Journal of Low Power Electronics, 2010, 6(1): 1-9. doi: 10.1007/978-3-642-11802-9_30. SAEIDEH S and RAHEBEH N A. A novel soft error hardened latch design in 90nm CMOS[C]. Proceedings of the 16th CSI International Symposium on Computer Architecture and Digital Systems, Shiraz, Iran, 2012: 60-63. RAJAEI R, TABANDEH M, and FAZELI M. Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation[J]. Microelectronics Reliability, 2013, 53(6): 912-924. doi: 10.1016/j.microrel.2013. 02.012. HUANG Zhengfeng, LIANG Huaguo, and HELLEBRAND S. A high performance SEU tolerant latch[J]. Journal of Electronic Testing. 2015, 31(4): 349-359. doi: 10.1007/s10836 -015-5533-5. JUN F, JUNKI Y, and KAZUTOSHI K. A radiation- hardened non-redundant flip-flop, stacked leveling critical charge flip-flop in a 65 nm thin BOX FD-SOI process[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2080-2086. doi: 10.1109/TNS.2016.2543745. LU Y, LOMBARDI F, PONTARELLI S, et al. Design and analysis of single-event tolerant slave latches for enhanced scan delay testing[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 333-343. doi: 10.1109/ TDMR.2013.2266543. MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024-2031. doi: 10.1109/TNS.1982.4336490. NAN H and CHOI K. High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(7): 1445-1457. doi: 10.1109/TCSI. 2011.2177135. YAN Aibin, LIANG Huaguo, HUANG Zhengfeng, et al. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations[J]. Microelectronics Reliability, 2016, 63(1): 239-250. doi: 10.1016/j.microrel.2016.06.004. -
計(jì)量
- 文章訪問數(shù): 1383
- HTML全文瀏覽量: 179
- PDF下載量: 491
- 被引次數(shù): 0