一種基于空域?yàn)V波的空間臨近相干源角度估計(jì)方法
doi: 10.11999/JEIT160882
基金項(xiàng)目:
國家自然科學(xué)基金(61571344),上海航天科技創(chuàng)新基金(SAST2015071, SAST2015064)
Direction of Arrival Estimation Method for Spatially Adjacent Coherent Sources Based on Spatial Filtering
Funds:
The National Natural Science Foundation of China (61571344), The Funds of SAST (SAST2015071, SAST 2015064)
-
摘要: 相干源常見于存在多徑的場景,如何解相干歷來是陣列信號處理領(lǐng)域亟待解決的難題之一,特別針對空間臨近相干源,其角度估計(jì)精度尚有待提高。針對空間臨近相干源該文提出一種基于空域?yàn)V波的角度估計(jì)方法。首先利用空域?yàn)V波技術(shù)將多個(gè)相干源分離,再對濾波分離后的各個(gè)信號分別進(jìn)行角度估計(jì),并通過對濾波器系數(shù)和相干源角度的迭代優(yōu)化提高測角精度。針對非均勻線陣,該方法采用虛擬陣列技術(shù)擴(kuò)展其適用范圍。計(jì)算機(jī)仿真結(jié)果表明該方法的測角精度較現(xiàn)有方法更高,信噪比較高時(shí)其測角的均方根誤差可達(dá)克拉美羅界,驗(yàn)證了該方法的有效性和在空間臨近相干源場景的優(yōu)越性。
-
關(guān)鍵詞:
- 雷達(dá)信號處理 /
- 來波方向估計(jì) /
- 空間臨近相干源 /
- 空域?yàn)V波 /
- 解相干
Abstract: Coherent sources commonly exist in scenarios with multipath effect. How to decorrelate coherent sources is traditionally a problem urgently to be solved in the array signal processing domain. Especially for spatially adjacent coherent sources, the performance of the estimation of Direction Of Arrival (DOA) remains to be improved. A DOA estimation method based on spatial filtering is proposed for spatially adjacent coherent sources. Multiple coherent sources are separated by spatial filtering and the DOAs are estimated respectively afterwards. The performance of the DOA estimation is enhanced by refining the filter parameters and the DOAs of the coherent sources iteratively. To extend its application to non-uniform linear array, the virtual array technique is adopted. The computer simulation results indicate that the proposed algorithm has better DOA estimation performance than the existing methods. In the scenario of sufficiently high Signal to Noise Ratio (SNR), the Root Mean Square Error (RMSE) could achieve Cramer-Rao Bound (CRB). The effectiveness and the superiority of the proposed method for spatially adjacent coherent sources are validated by the simulation results. -
劉源, 王洪先, 糾博, 等. 米波MIMO雷達(dá)低空目標(biāo)波達(dá)方向估計(jì)新方法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 622-628. doi: 10.11999/JEIT150555. LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar in low-angle tracking environment[J]. Journal of Electronics Information Technology, 2016, 38(3): 622-628. doi: 10.11999/ JEIT150555. 鄭軼松, 陳伯孝. 米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013. ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics Information Technology, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013. KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79. 526899. SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830. ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276. SHAN Tiejun, WAX M, and KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP. 1985.1164649. KUNG S, LO C, and FOKA R. A Toeplitz approximation approach to coherent source direction finding[C] IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986: 193-196. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582. HE Z Q, LIU Q H, JIN L N, et al. Low complexity method for DOA estimation using array covariance matrix sparse representation[J]. Electronics Letters, 2013, 49(3): 228-230. doi: 10.1049/el.2012.4032. WEI Cui, TONG Qian, and JING Tian. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290. doi: 10.1049/el.2014.4519. LIU Hongqing, ZHAO Liuming, LI Yong, et al. A sparse- based approach for DOA estimation and array calibration in uniform linear array[J]. IEEE Sensors Journal, 2016, 16(15): 6018-6027. doi: 10.1109/JSEN. 2016.2577712. WANG Yi, YANG Minglei, CHEN Baixiao, et al. Improved DOA estimation based on real-valued array covariance using sparse Bayesian learning[J]. Signal Processing, 2016, 129: 183-189. doi: 10.1016/j.sigpro.2016.06.002. WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790. YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378. ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773. LIU Zhangmeng, LIU Zheng, FENG Daowang, et al. Direction-of-arrival estimation for coherent sources via sparse Bayesian learning[J]. International Journal of Antennas and Propagation, 2014, (2014): 1-8. doi: 10.1155/2014/959386. TEAGUE C C. Root-MUSIC direction finding applied to multifrequency coastal radar[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1896-1898. FRIEDLANDER B and WEISS A J. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 574-587. doi: 10.1109/7.144583. -
計(jì)量
- 文章訪問數(shù): 1511
- HTML全文瀏覽量: 123
- PDF下載量: 305
- 被引次數(shù): 0