基于概率密度函數(shù)匹配與分?jǐn)?shù)低階矩的并行盲均衡算法
doi: 10.11999/JEIT160841
-
1.
(大連理工大學(xué)電子信息與電氣工程學(xué)部 大連 116024) ②(國(guó)家無(wú)線電監(jiān)測(cè)中心 北京 100037)
國(guó)家自然科學(xué)基金(61671105, 61139001, 61172108, 81241059)
Concurrent Blind Equalization Algorithm Based on Probability Density Function Matching and Fractional Lower Order Moments
-
1.
(Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China)
-
2.
(State Radio Monitoring Center, Beijing 100037, China)
The National Natural Science Foundation of China (61671105, 61139001, 61172108, 81241059)
-
摘要: 為了提高脈沖噪聲下盲均衡器的性能,該文提出一種基于概率密度函數(shù)匹配與分?jǐn)?shù)低階矩的并行盲均衡算法。首先采用概率密度函數(shù)匹配的思想進(jìn)行盲均衡,充分利用其收斂速度快的優(yōu)勢(shì)。為了解決此均衡過(guò)程中引起的相位信息損失以及抑制脈沖噪聲能力差的問(wèn)題,又以并行的方式結(jié)合判決信號(hào)的分?jǐn)?shù)低階矩,并以此作為代價(jià)函數(shù)來(lái)共同更新盲均衡器的權(quán)向量,進(jìn)一步提高了算法在脈沖噪聲下的收斂速度與收斂精度。仿真實(shí)驗(yàn)表明,所提算法在有效解決相位旋轉(zhuǎn)問(wèn)題的同時(shí)較好地抑制了脈沖噪聲,此外還具有較快的收斂速度和較小的穩(wěn)態(tài)誤差,穩(wěn)健性較強(qiáng)。
-
關(guān)鍵詞:
- 盲均衡 /
- 概率密度函數(shù) /
- 并行算法 /
- 分?jǐn)?shù)低階矩
Abstract: In order to improve the performance of the blind equalizer under impulsive noise environments, a novel concurrent blind equalization algorithm based on probability density function matching and fractional lower order moments is presented. This algorithm uses the idea of probability density function matching at the beginning, and makes full use of the advantage of its fast convergence speed. In order to solve the problems of the phase information loss and incapability of suppressing impulse noise, this paper combines the fractional lower order moments of the decision signal in parallel as the cost function to update the weight coefficients of the blind equalizer. The convergence speed and convergence precision is further improved. The simulation experiments results show that the algorithm can effectively solve the problem of phase rotation and better suppress the impulse noise. Moreover, the algorithm has fast convergence speed, small steady-state error and strong robustness. -
LIM J. Mixture filtering approaches to blind equalization based on estimation of time-varying and multi-path channels [J]. Journal of Communications Networks, 2016, 18(1): 8-18. doi: 10.1109/JCN.2016.000004. SILVA M T M and ARENAS-GARCIA J. A soft-switching blind equalization scheme via convex combination of adaptive filters[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1171-1182. doi: 10.1109/TSP.2012.2236835. YU C and XIE L. On recursive blind equalization in sensor networks[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 662-672. doi: 10.1109/TSP.2014.2376884. SCARANO G, PETRONI A, BIAGI M, et al. Second-order statistics driven LMS blind fractionally spaced channel equalization[J]. IEEE Signal Processing Letters, 2017, 24(2): 161-165. doi: 10.1109/LSP.2016.2635034. 邱天爽, 戚寅哲. 穩(wěn)定分布噪聲下基于粒子濾波的雙站偽多普勒定位方法[J]. 通信學(xué)報(bào), 2016, 37(1): 28-34. doi: 10.11959 /J.ISSN.1000-436x.2016004. QIU Tianshuang and QI Yinzhe. Dual-station pseudo- Doppler localization method based on particle filtering with stable distribution noise[J]. Journal on Communications, 2016, 37(1): 28-34. doi: 10.11959/J.ISSN.1000-436x.2016004. LUAN S, QIU T, ZHU Y, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120(4): 503-508. doi: 10. 1016/J.SIGPRO.2015.09.023. PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195. doi: 10.1109/TWC.2014.042314.131432. RUPI M, TSAKALIDES P, RE E D, et al. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing, 2004, 84(5): 881-894. doi: 10.1016/J. SIGPRO.2004.01.006. TANG Hong, QIU Tianshuang, and LI Ting. Capture properties of the generalized CMA in alpha-stable noise environment[J]. Wireless Personal Communications, 2009, 49(1): 439-442. doi: 10.1007/S11277-008-9560-8. LI S and QIU T S. Tracking performance analysis of fractional lower order constant modulus algorithm[J]. Electronics Letters, 2009, 45(11): 545-546. doi: 10.1049/EL. 2009.0561. 郭瑩, 邱天爽, 唐洪,等. 脈沖噪聲環(huán)境下的恒模盲均衡算法[J]. 通信學(xué)報(bào), 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000- 436X.2009.04.007. GUO Ying, QIU Tianshuang, TANG Hong, et al. Constant modulus algorithm for blind equalization under impulsive noise environments[J]. Journal on Communications, 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000-436X.2009.04.007. LI Sen, WANG Yan, and LIN Bin. Concurrent blind channel equalization in impulsive noise environments[J]. Chinese Journal of Electronics, 2013, 22(4): 741-746. LAZARO M, SANTAMARIA I, ERDOGMUS D, et al. Stochastic blind equalization based on PDF fitting using Parzen estimator[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 696-704. doi: 10.1109/TSP.2004.840767. KIM N, BYUN H G, YOU Y H, et al. Blind signal processing for impulsive noise channels[J]. Journal of Communications Networks, 2012, 14(1): 27-33. doi: 10.1109/JCN.2012. 6184548. LIU H, LI Y, ZHOU Y, et al. Impulsive noise suppression in the case of frequency estimation by exploring signal sparsity [J]. Digital Signal Processing, 2016, 57(3): 34-45. doi: 10.1016 /J.DSP.2016.06.012. 郭業(yè)才, 龔秀麗, 張艷萍. 基于樣條函數(shù)Renyi熵的時(shí)間分集小波盲均衡算法[J]. 電子與信息學(xué)報(bào), 2011, 33(9): 2050-2055. doi: 10.3724/SP.J.1146.2011.00110. GUO Yecai, GONG Xiuli, and ZHANG Yanping. Spline function Renyi entropy based tme diversity wavelet blind equalization algorithm[J]. Journal of Elestronics Information Technology, 2011, 33(9): 2050-2055. doi: 10.3724 /SP.J.1146.2011.00110. ALNAFFOURI T Y, DAHMAN A A, SOHAIL M S, et al. Low complexity blind equalization for OFDM systems with general constellations[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6395-6407. doi: 10.1109/TSP.2012. 2218808. -
計(jì)量
- 文章訪問(wèn)數(shù): 1660
- HTML全文瀏覽量: 350
- PDF下載量: 548
- 被引次數(shù): 0