基于SRAM物理不可克隆函數(shù)的高效真隨機(jī)種子發(fā)生器設(shè)計(jì)
doi: 10.11999/JEIT160835
-
1.
(東南大學(xué)集成電路學(xué)院 南京 210000) ②(深圳大學(xué)信息工程學(xué)院 深圳 518060)
國(guó)家自然科學(xué)基金(61571116)
Efficient Design of Truly Random Seed Generator Based on SRAM Physical Unclonable Functions
-
1.
(School of Integrated Circuit, Southeast University, Nanjing 210000, China)
-
2.
(College of Information Engineering, Shenzhen University, Shenzhen 518060, China)
The National Natural Science Foundation of China (61571116)
-
摘要: 該文設(shè)計(jì)了一種基于SRAM物理不可克隆函數(shù)(PUFs)的高效真隨機(jī)種子發(fā)生器。通過將不提供熵值的穩(wěn)定節(jié)點(diǎn)和提供低熵值的噪聲節(jié)點(diǎn)篩除,只選用能夠提供較高熵值的噪聲節(jié)點(diǎn)來生成滿熵種子,大幅降低需要處理的數(shù)據(jù)量,提高節(jié)點(diǎn)數(shù)據(jù)的處理效率。通過測(cè)試SRAM PUFs內(nèi)部噪聲節(jié)點(diǎn)的振蕩特性,提出篩選出SRAM PUFs內(nèi)部高熵值的噪聲節(jié)點(diǎn)的最佳策略,最終基于此策略設(shè)計(jì)出真隨機(jī)種子發(fā)生器。該設(shè)計(jì)可以產(chǎn)生128~256 bit長(zhǎng)度的滿熵的種子且處理的節(jié)點(diǎn)數(shù)據(jù)量只有當(dāng)前方法的0.5%~4%。生成的種子滿足NIST架構(gòu)的隨機(jī)數(shù)生成器要求,產(chǎn)生的偽隨機(jī)數(shù)全部通過了隨機(jī)數(shù)檢測(cè)。與現(xiàn)有設(shè)計(jì)相比,該文提出的真隨機(jī)種子發(fā)生器是一種高效的、適用范圍較廣的設(shè)計(jì)。
-
關(guān)鍵詞:
- 物理不可克隆函數(shù) /
- 噪聲節(jié)點(diǎn) /
- 真隨機(jī)種子 /
- 高效率
Abstract: An efficient design of truly random seed generator based on SRAM Physical Unclonable Functions (PUFs) is proposed in this paper. Only the noisy cells of high min-entropy are selected to generate full entropy seeds in this design. Therefore, it can reduce the amount of data to be processed significantly and improve the efficiency of seed generation. The oscillating characteristics of the noisy cells inside SRAM are measured, and screening strategies for filtering out the selected noisy cells inside the SRAM are put forward. Finally, based on the strategies, a truly random seed generator is designed, which can generate full entropy seeds. The length of seeds generated by this design is from 128 bit to 256 bit. The number of the selected cells which are used to generate seeds is from 0.5% to 4% of all SRAM cells. Compared to the current design, it is shown that the proposed design in this paper is efficient and widely applicable.-
Key words:
- Physical Unclonable Functions (PUFs) /
- Noisy cells /
- Truly random seed /
- Efficient
-
PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026-2030. doi: 10.1126/science.1074376. BARBARESCHI M, BATTISTA E, MAZZEO A, et al. Testing 90 nm microcontroller SRAM PUF quality[C]. IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era, Naples, Italy, 2015: 1-6. HOLCOMB D E, BURLESON W P, and FU K. Power-Up SRAM state as an identifying fingerprint and source of true random numbers[J]. IEEE Transactions on Computers, 2008, 58(9): 1198-1210. doi: 10.1109/TC.2008.212. XIAO K, RAHMAN M T, FORTE D, et al. Bit selection algorithm suitable for high-volume production of SRAM-PUF[C]. IEEE International Symposium on Hardware-Oriented Security and Trust, Arlington, Virginia, USA, 2014: 101-106. LEEST V V D, SLUIS E V D, SCHRIJEN G J, et al. Efficient implementation of true random number generator based on SRAM PUFs[J]. Lecture Notes in Computer Science, 2012, 6805: 300-318. doi: 10.1007/978-3-642-28368-0_20. ZHANG J, LIN Y, LYU Y, et al. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing[J]. IEEE Transactions on Information Forensics Security, 2015, 10(6): 1137-1150. doi: 10.1109/TIFS.2015.2400413. DELVAUX J, GU D, SCHELLEKENS D, et al. Helper data algorithms for PUF-based key generation: Overview and analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(6): 889-902. doi: 10.1109/TCAD.2014.2370531. KIM H and HONG S. AES Sbox GF(24) inversion functions based PUFs[C]. IEEE International SoC Design Conference (ISOCC), Jeju, South Korea, 2014: 15-16. VARCHOLA M, DRUTAROVSKY, M, and FISCHER V. New universal element with integrated PUF and TRNG capability[C]. International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico. 2013: 1-6. HUSSAIN S U, MAJZOOBI M, and KOUSHANFAR F. A built-in-self-test scheme for online evaluation of physical unclonable functions and true random number generators[J]. IEEE Transactions on Multi-Scale Computing Systems, 2016, 2(1): 2-16. doi: 10.1109/TMSCS.2016.2519902. LI D, LU Z, ZOU X, et al. PUFKEY: A high-security and high-throughput hardware true random number generator for sensor networks[J]. Sensors, 2015, 15(10): 26251-26266. doi: 10.3390/s151026251. HERREWEGE V A, VINCENT V D L, SCHALLER A, et al. Secure PRNG seeding on commercial off-the-shelf microcontrollers[C]. International Workshop on Trustworthy Embedded Devices, Berlin, Germany, 2013: 55-64. CORTEZ M, DARGAR A, HAMDIOUI S, et al. Modeling SRAM start-up behavior for physical unclonable functions[C]. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Austin, TX, USA, 2012: 815-828. BARKER E and KELSEY J. Recommendation for random number generation using deterministic random bit generators[R]. NIST Special Publication, 2012: 800-890. GUAJARDO J, KUMAR S S, SCHRIJEN G J, et al. FPGA intrinsic PUFs and their use for IP protection[C] Cryptographic Hardware and Embedded Systems, CHES 2007, International Workshop, Vienna, Austria, 2007: 63-80. -
計(jì)量
- 文章訪問數(shù): 1275
- HTML全文瀏覽量: 117
- PDF下載量: 373
- 被引次數(shù): 0