高性能集成鎖相環(huán)中低失配電荷泵的設(shè)計(jì)
doi: 10.11999/JEIT160826
-
1.
(大連理工大學(xué)電子科學(xué)與技術(shù)學(xué)院 大連 116024) ②(大連民族大學(xué)信息與通信工程學(xué)院 大連 116600
國家自然科學(xué)基金(61131004, 61274076, 61001054)
Design of a Low-spur Charge Pump for High Performance CMOS Phase-locked Loops
-
1.
(School of Electronic Science and Technology, Dalian University of Technology, Dalian 116024, China)
The National Natural Science Foundation of China (61131004, 61274076, 61001054)
-
摘要: 在分析電荷泵結(jié)構(gòu)、工作原理和產(chǎn)生雜散機(jī)理的基礎(chǔ)上,該文提出了一種低靜態(tài)電流失配、低時(shí)序失配的高性能電荷泵。此電荷泵通過減小電荷泵開關(guān)過程中時(shí)序失配和電流失配,減小了高頻鎖相環(huán)中的抖動(dòng)和雜散?;谥行緡H0.18 m CMOS射頻工藝技術(shù)和1.8 V電源電壓,對采用此高性能電荷泵的鎖相環(huán)進(jìn)行了相位噪聲仿真。仿真結(jié)果驗(yàn)證了這些鎖相環(huán)具有低噪聲特性:在480 MHz的輸出頻率下,二階鎖相環(huán)的周期抖動(dòng)為1.05 ps,最大參考雜散為-121 dBc。Abstract: On the basis of the analysis of the structure, operation principle and mechanism of generating spurs of the charge pump, a charge pump with a low static current mismatch and a low timing mismatch is proposed. This charge pump suppresses the jitter and spurs in high-speed Phase-Looked Loops (PLL) by improving the timing mismatch and the current mismatch during switching in the charge pump. Based on the SMIC 0.18 m CMOS radio frequency technology with 1.8 V power supply, the phase noise simulation of the PLLs adopting the proposed charge pump is performed. The simulation results demonstrate that those PLLs achieve a low noise performance: the second-order PLL shows a period jitter of 1.05 ps and the largest reference spur of -121 dBc with the PLL output frequency of 480 MHz.
-
Key words:
- Integrated Circuits (IC) /
- Phase-Locked Loop (PLL) /
- Jitter /
- Reference spur
-
黃水龍, 王志華. 快速建立時(shí)間的自適應(yīng)鎖相環(huán)[J]. 電子與信息學(xué)報(bào), 2007, 29(6): 1492-1495. HUANG Shuilong and WANG Zhihua. An adaptive PLL architecture to achieve fast settling time[J]. Journal of Electronics Information Technology, 2007, 29(6): 1492-1495. 李學(xué)初, 高清運(yùn), 陳浩瓊, 等. CMOS集成時(shí)鐘恢復(fù)電路設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2007, 29(6): 1496-1499. LI Xuechu, GAO Qingyun, CHEN Haoqiong, et al. The design of monolithic CMOS clock recovery circuit[J]. Journal of Electronics Information Technology, 2007, 29(6): 1496-1499. LIU L and POKHAREL R. Compact modeling of phase-locked loop frequency synthesizer for transient phase noise and jitter simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 166-170. doi: 10.1109/TCAD.2015.2472018. GIERKINK S L J. Low-spur, low-phase-noise clock multiplier based on a combination of PLL and recirculating DLL with dual-pulse ring oscillator and self-correcting charge pump[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2967-2976. doi: 10.1109/JSSC.2008.2006225. KIM N S and RABAEY J M. A 3~10mW, 3.1~10.6 GHz integer-N QPLL with reference spur reduction technique for UWB-based cognitive radios[C]. Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, 2015: 67-70. doi: 10.1109/RFIC.2015.7337706. BANERJEE D. PLL Performance, Simulation and Design[M]. Texas: Dog Ear Publishing, 2006: 64-65. 陳永聰. 集成CMOS鎖相環(huán)中抑制參考雜散的設(shè)計(jì)方法[J]. 半導(dǎo)體學(xué)報(bào), 2006, 27(12): 2196-2202. CHEN Yongcong. Design technique to restrain reference spurs in CMOS phase lock loops[J]. Journal of Semiconductors, 2006, 27(12): 2196-2202. RHEE W. Design of high-performance CMOS charge pumps in phase-locked loops[C]. Proceedings of the IEEE Circuits and Systems, Orlando, FL, 1999, 2: 545-548. doi: 10.1109/ ISCAS.1999.780807. MANIKANDAN R R and AMRUTUR B. A zero charge-pump mismatch current tracking loop for reference spur reduction in PLLs[J]. Microelectronics Journal, 2015, 46(6): 422-430. doi: 10.1016/j.mejo.2015.03.004. ZHANG Z, YANG J, LIU L, et al. Source-switched charge pump with reverse leakage compensation technique for spur reduction of wideband PLL[J]. Electronics Letters, 2016, 52(14): 1211-1212. doi: 10.1049/el.2016.1036. LI S, JIANG J, ZHOU X, et al. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers[J]. Journal of Semiconductors, 2014, 35(1): 96-103. doi: 10.1088/1674-4926/35/1/015004. LOZADA O and ESPINOSA G. A charge pump with a 0.32% of current mismatch for a high speed PLL[J]. Analog Integrated Circuits Signal Processing, 2015, 86(2): 321-326. doi: 10.1007/s10470-015-0676-y. 薛紅, 李智群, 王志功, 等. 低雜散鎖相環(huán)中的電荷泵設(shè)計(jì)[J]. 半導(dǎo)體學(xué)報(bào), 2007, 28(12): 1988-1992. XUE Hong, LI Zhiqun, WANG Zhigong, et al. A charge pump design for low-spur PLL[J]. Journal of Semiconductors, 2007, 28(12): 1988-1992. CHOI Y S and HAN D H. Gain-boosting charge pump for current matching in phase-locked loop[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(10): 1022-1025. GUPTA S, MONDAL S A, and RAHAMAN H. Charge pump circuit with improved absolute current deviation and increased dynamic output voltage range across PVT variations[C]. Proceedings of the 2015 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Hyderabad, 2015: 32-35. doi: 10.1109/PrimeAsia.2015.7450465. MOON J W, CHOI K C, and CHOI W Y. A 0.4-V, 90~350-MHz PLL with an active loop-filter charge pump[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(5): 319-323. doi: 10.1109/TCSII.2014. 2312800. WANG S F, HWANG T S, and WANG J J. Phase-locked loop design with fast-digital-calibration charge pump[J]. International Journal of Electronics, 2015, 103(2): 1-13. doi: 10.1080/00207217.2015.1036371. MANEATIS J G. Low-jitter process-independent DLL and PLL based on self-biased techniques[J]. IEEE Journal of Solid-State Circuits, 1996, 31(11): 1723-1732. MANEATIS J G, KIM J, MCCLATCHIE I, et al. Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL[J]. IEEE Journal of Solid-State Circuits, 2003, 38(11): 1795-1803. doi: 10.1109/JSSC.2003.818298. KIM S H and CHO S B. Low phase noise and fast locking PLL frequency synthesizer for a 915 MHz ISM band[C]. Proceedings of the 2007 International Symposium on Integrated Circuits, Singapore, 2007: 592-595. CHU A, DEO N, AHMAD W, et al. An ultra-low power charge-pump PLL with high temperature stability in 130 nm CMOS[C]. Proceedings of the IEEE New Circuits and Systems Conference, Grenoble, 2015: 1-4. doi: 10.1109/ NEWCAS.2015.7182075. MENG X and LIN F. Clock generator IP design in 180 nm CMOS technology[J]. Analog Integrated Circuits Signal Processing, 2016, 87(3): 1-9. doi: 10.1007/s10470-016-0737-x. THIBIEROZ H. Using spectre RF noise-aware PLL methodology to predict PLL behavior accurately[OL]. https://zh.scribd.com/document/67585642/Using-Spectre-RF-Noise-Aware-PLL-Methodology-to-Predict-PLL-Behavior-Accurately, 2007. 張昌明, 肖振宇, 曾烈光, 等. 基于IEEE 802.11ad標(biāo)準(zhǔn)的單載波60 GHz通信系統(tǒng)性能分析[J]. 電子與信息學(xué)報(bào), 2012, 34(1): 218-222. doi: 10.3724/SP.J.1146.2011.00447. ZHANG Changming, XIAO Zhenyu, Zeng Lieguang, et al. Performance analysis of Single-Carrier (SC) 60 GHz communication system based on IEEE 802.11ad standard[J]. Journal of Electronics Information Technology, 2012, 34(1): 218-222. doi: 10.3724/SP.J.1146.2011.00447. 馬曉慧, 鄒傳云. 數(shù)字超寬帶信號的功率譜密度[J]. 電子與信息學(xué)報(bào), 2007, 29(8): 1877-1881. MA Xiaohui and ZOU Chuanyun. Power spectral density of digital ultra wide-band signals[J]. Journal of Electronics Information Technology, 2007, 29(8): 1877-1881. -
計(jì)量
- 文章訪問數(shù): 1473
- HTML全文瀏覽量: 166
- PDF下載量: 343
- 被引次數(shù): 0