一種采用復(fù)合中繼激勵的協(xié)作下行傳輸機(jī)制
doi: 10.11999/JEIT160799
基金項(xiàng)目:
國家自然科學(xué)基金(61401354, 61501285, 61102057), 高等學(xué)校引智計劃基金(B08038)
A Compound Relay Incentive Based Downlink Cooperative Transmission Mechanism
Funds:
The National Natural Science Foundation of China (61401354, 61501285, 61102057), The 111 Project (B08038)
-
摘要: 為了解決現(xiàn)有中繼激勵機(jī)制中長期回報存在不確定性,以及即時回報導(dǎo)致資源利用效率降低的問題,該文針對協(xié)作下行通信系統(tǒng)提出一種復(fù)合中繼激勵機(jī)制(CCRI)。首先利用鏈路不平衡產(chǎn)生的瓶頸,將第1跳鏈路超過第2跳的數(shù)據(jù)速率部分作為即時回報,用于中繼節(jié)點(diǎn)自身數(shù)據(jù)的傳輸;同時針對即時回報量不足,過量或瓶頸存在于第1跳導(dǎo)致即時回報失效的情況,采用基于比例公平的長期回報作為補(bǔ)充,進(jìn)一步調(diào)整中繼節(jié)點(diǎn)的調(diào)度權(quán)重。仿真結(jié)果表明,所提機(jī)制能夠給予中繼節(jié)點(diǎn)合理的回報,并實(shí)現(xiàn)系統(tǒng)頻譜效率和生存時間,以及中繼能量效率的改善。
-
關(guān)鍵詞:
- 協(xié)作通信 /
- 中繼激勵 /
- 用戶調(diào)度 /
- 能量效率
Abstract: In order to overcome the uncertainty of the reward with long-term relay incentive strategy and the degradation of resource utilization efficiency incurred by the short-term incentive scheme, a Cooperative Compound Relay Incentive (CCRI) mechanism is proposed for cooperative downlink communication system. By exploiting the bottleneck resulted from the imbalance of links capability, the rate difference that the first hop exceeds the second is provided as an instant reward for the relay nodes own data transmission. In addition, by taking into account the situations where the short-term reward is insufficient, excessive or the bottleneck exists in the first hop in such a case that the short-term incentive scheme becomes unavailable, a proportional fair based long-term incentive is employed as supplementary, with which the relay nodes scheduling weight is further adjusted. Simulation results show that the proposed scheme can provide rational reward to the relay and achieve improvements of systems spectral efficiency and lifetime, as well as relays energy efficiency.-
Key words:
- Cooperative communication /
- Relay incentive /
- User scheduling /
- Energy efficiency
-
NI Y, JIN S, XU W, et al. Beamforming and interference cancellation for D2D communication underlaying cellular networks[J]. IEEE Transactions on Communications, 2015, 64(2): 832-846. doi: 10.1109/TCOMM.2015.2507574. 李釗, 蔡沈錦. 協(xié)作通信中基于鏈路不平衡的中繼激勵[J]. 西安電子科技大學(xué)學(xué)報, 2016, 43(6): 16-22. doi: 10.3969/j.issn. 1001-2400.2016.06.003. LI Z and CAI S. Relay incentive in cooperative communication by exploiting link imbalance[J]. Journal of Xidian University, 2016, 43(6): 16-22. doi: 10.3969/j.issn. 1001-2400.2016.06.003. SIMEONE O, STANOJEV I, SAVAZZI S, et al. Spectrum leasing to cooperating secondary ad hoc networks[J]. IEEE Journal of Selected Areas in Communications, 2008, 26(1): 203-213. doi: 10.1109/JSAC.2008.080118. SU W, MATYJAS J D, and BATALAMA S. Active cooperation between primary users and cognitive radio users in cognitive ad-hoc networks[C]. IEEE Acoustics Speech and Signal Processing (ICASSP), Dallas, 2010: 3174-3177. doi: 10.1109/ICASSP.2010.5496070. DI B, BAYAT S, SONG L, et al. Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory[C]. IEEE Global Communications Conference (GLOBECOM), San Diego, 2015: 1-6. doi: 10.1109/GLOCOM.2015.7417643. WEI H-Y and GITLIN R D. Incentive scheduling for cooperative relay in WWAN/WLAN two-hop-relay network[C]. IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, 2005: 1696-1701. doi: 10.1109/WCNC.2005.1424768. GUEGUEN C, RACHEDI A, and GUIZANI M. Incentive scheduler algorithm for cooperation and coverage extension in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 797-808. doi: 10.1109/TVT.2012. 2225855. MACH P, BECVAR Z, and VANEK T. In-band device-to-device communication in OFDMA cellular networks: a survey and challenges[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 1885-1922. doi: 10.1109/COMST.2015.2447036. MEHMOOD Y, GRG C, and TIMM-GIEL A. A radio resource sharing scheme for IoT/M2M communication in LTE-A downlink[C]. IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016: 296-301. doi: 10.1109/ICCW.2016.7503803. VANGANURU K, FERRANTE S, and STERNBERG G. System capacity and coverage of a cellular network with D2D mobile relays[C]. IEEE Military Communications Conference (MILCOM), Orlando, 2012: 1-6. doi: 10.1109/MILCOM. 2012.6415659. SIGDEL S and KRZYMIEN W. Simplified fair scheduling and antenna selection algorithms for multiuser MIMO orthogonal space-division multiplexing downlink[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1329-1344. doi: 10.1109/TVT.2008.925002. HNUTER C, ZHONG L, and SABHARWAL A. Leveraging physical-layer cooperation for energy conservation[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1): 131-145. doi: 10.1109/TVT.2013.2271121. KAUFMAN B and AAZHANG B. Cellular networks with an overlaid device to device network[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2008: 1537-1541. doi: 10.1109/ACSSC.2008.5074679. LIU L, MIAO G, and ZHANG J. Energy-efficient scheduling for downlink multi-user MIMO[C]. IEEE International Conference on Communications (ICC), Ottawa, 2012: 4390-4394. doi: 10.1109/ICC.2012.6363935. 3GPP TR 36.931 version 13.0.0 Release 13. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio frequency (RF) requirements for LTE pico node B[S]. France: ETSI 3GPP, 2016. SOUIHLI O and OHTSUKI T. Joint feedback and scheduling scheme for service-differentiated multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 528-533. doi: 10.1109/TWC.2010.02.090212. ANAND B, THIRUGNANAM K, SEBASTIAN J, et al. Adaptive display power management for mobile games[C]. International Conference on Mobile Systems, Applications, and Services (ACM MobiSys), Washington, 2011: 21-26. doi: 10.1145/1999995.2000002. -
計量
- 文章訪問數(shù): 1000
- HTML全文瀏覽量: 73
- PDF下載量: 344
- 被引次數(shù): 0