一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

由最大同類球提取模糊分類規(guī)則

徐明亮 王士同

徐明亮, 王士同. 由最大同類球提取模糊分類規(guī)則[J]. 電子與信息學(xué)報, 2017, 39(5): 1130-1135. doi: 10.11999/JEIT160779
引用本文: 徐明亮, 王士同. 由最大同類球提取模糊分類規(guī)則[J]. 電子與信息學(xué)報, 2017, 39(5): 1130-1135. doi: 10.11999/JEIT160779
XU Mingliang, WANG Shitong. Extracting Fuzzy Rules from the Maximum Ball Containing the Homogeneous Data[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1130-1135. doi: 10.11999/JEIT160779
Citation: XU Mingliang, WANG Shitong. Extracting Fuzzy Rules from the Maximum Ball Containing the Homogeneous Data[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1130-1135. doi: 10.11999/JEIT160779

由最大同類球提取模糊分類規(guī)則

doi: 10.11999/JEIT160779
基金項目: 

國家自然科學(xué)基金(61170122, 61202311, 61272210),江蘇省自然科學(xué)基金(BK2012552),江蘇省青藍(lán)工程資助項目(2014)

Extracting Fuzzy Rules from the Maximum Ball Containing the Homogeneous Data

Funds: 

The National Natural Science Foundation of China (61170122, 61202311, 61272210), The Natural Science Foundation of Jiangsu Province (BK2012552), The Qing Lan Project of Jiangsu Province (2014)

  • 摘要: 為提高模糊分類規(guī)則的有效性和可解釋性,該文提出一種基于最大同類球的模糊規(guī)則提取方法。首先,每個樣本根據(jù)與最近異類之間的距離確定一個最大同類球。然后根據(jù)各個同類球中樣本之間的包含關(guān)系和獨有性對同類球進(jìn)行約簡。再根據(jù)約簡后的同類球建立MA分類器的模糊規(guī)則前件。MA(Mamdani-Assilan)二分類器的模糊規(guī)則后件參數(shù)學(xué)習(xí)以加權(quán)分類錯誤平方最小化為目標(biāo)函數(shù),采用共軛梯度法求解后件參數(shù)。KEEL標(biāo)準(zhǔn)數(shù)據(jù)集中的12個10折交叉驗數(shù)據(jù)集的對比分類實驗驗證了該方法的有效性。
  • HARANDI F A and DERHAMI V. A reinforcement learning algorithm for adjusting antecedent parameters and weights of fuzzy rules in a fuzzy classifier[J]. Journal of Intelligent Fuzzy Systems, 2016, 30(4): 2339-2347. doi: 10.3233/IFS- 152004.
    JAMALABADI H, NASROLLAHI H, ALIZADEH S, et al. Competitive interaction reasoning: A bio-inspired reasoning method for fuzzy rule based classification systems[J]. Information Sciences, 2016, 352: 35-47. doi: 10.1016/ j.ins.2016.02.052.
    CINTRA M E, CAMARGO H A, and MONARD M C. Genetic generation of fuzzy systems with rule extraction using formal concept analysis[J]. Information Sciences, 2016, 349: 199-215. doi: 10.1016/j.ins.2016.02.026
    POURPANAHA F, LIM C P, and MOHAMAD SALEHA J. A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction[J]. Expert Systems With Applications, 2016, 49: 74-85. doi: 10.1016/j.eswa. 2015.11.009.
    李繼東, 張學(xué)杰. 基于遺傳算法的多維模糊分類器構(gòu)造的研究[J]. 軟件學(xué)報, 2005, 16(5): 779-785.
    LI J D and ZHANG X J. Research on the construction of fuzzy classifier system for multidimensional pattern classification using genetic algorithms[J]. Journal of Software, 2005, 16(5): 779-785.
    RUDZINSKI F. A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers[J]. Applied Soft Computing, 2016, 38: 118-133. doi: 10.1016/ j.asoc.2015.09.038.
    MARIAN B G and RUDZINSKI F. A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with balanced accuracy and interpretability[J]. Applied Soft Computing, 2016, 40: 206-220. doi: 10.1016/j.asoc.2015. 11.037.
    SHANGHOOSHABAD A M and ABADEH M S. Robust, interpretable and high quality fuzzy rule discovery using krill herd algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(3): 1601-1612. doi: 10.3233/IFS-151867
    GARCA-GALN S, PARDO P R, and MUNOZ EXPSITO J E. Rules discovery in fuzzy classifier systems with PSO for scheduling in grid computational infrastructures[J]. Applied Soft Computing, 2015, 29: 424-435. doi: 10.1016/j.asoc.2014.11.064.
    WU Jue, YANG Lei, LI Tianrui, et al. Rule-based fuzzy classifier based on quantum ant optimization algorithm[J]. Journal of Intelligent Fuzzy Systems, 2015, 29 (6): 2365-2371. doi: 10.3233/IFS-151935.
    MAHDIZADEH M and EFTEKHARI M. Generating fuzzy rule base classifier for highly imbalanced datasets using a hybrid of evolutionary algorithms and subtractive clustering[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(6): 3033-3046. doi: 10.3233/IFS-141261.
    邢宗義, 張永, 侯遠(yuǎn)龍, 等. 基于模糊聚類和遺傳方法的具備解釋性和精確性的模糊分類系統(tǒng)設(shè)計[J]. 電子學(xué)報, 2006, 34(1): 83-88.
    XING Zongyi, ZHANG Yong, HOU Yuanlong, et al. Design of interpretable and precise fuzzy classification system based on fuzzy clustering and genetic algorithm[J]. Acta Electronica Sinica, 2006, 34(1): 83-88.
    王莉, 周獻(xiàn)中, 李華雄. 基于決策粗糙集的模糊分類模型[J]. 信息與控制, 2014, 43(1): 24-29. doi: 10.3724/SP.J.1219.2014. 00024.
    WANG Li, ZHOU Xianzhong, and LI Huaxiong. Fuzzy classification model based on decision-theoretic rough set[J]. Information and Control, 2014, 43(1): 24-29. doi: 10. 3724 /SP.J.1219.2014.00024.
    JACK M L. Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 802-812. doi: 10.1109/TFUZZ.2014.2327995
    LESKI J M. Iteratively reweighted least squares classifier and is - and -regularized kernel versions[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58(1): 171-182. doi: 10.2478/v10175-010-0018-2.
  • 加載中
計量
  • 文章訪問數(shù):  1051
  • HTML全文瀏覽量:  102
  • PDF下載量:  315
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-07-22
  • 修回日期:  2017-01-09
  • 刊出日期:  2017-05-19

目錄

    /

    返回文章
    返回