由最大同類球提取模糊分類規(guī)則
doi: 10.11999/JEIT160779
-
2.
(江南大學(xué)數(shù)字媒體學(xué)院 無錫 214122) ②(無錫環(huán)境科學(xué)與工程研究中心 無錫 214063)
國家自然科學(xué)基金(61170122, 61202311, 61272210),江蘇省自然科學(xué)基金(BK2012552),江蘇省青藍(lán)工程資助項目(2014)
Extracting Fuzzy Rules from the Maximum Ball Containing the Homogeneous Data
-
2.
(The School of Digital Media, Jiangnan University, Wuxi 214122, China)
The National Natural Science Foundation of China (61170122, 61202311, 61272210), The Natural Science Foundation of Jiangsu Province (BK2012552), The Qing Lan Project of Jiangsu Province (2014)
-
摘要: 為提高模糊分類規(guī)則的有效性和可解釋性,該文提出一種基于最大同類球的模糊規(guī)則提取方法。首先,每個樣本根據(jù)與最近異類之間的距離確定一個最大同類球。然后根據(jù)各個同類球中樣本之間的包含關(guān)系和獨有性對同類球進(jìn)行約簡。再根據(jù)約簡后的同類球建立MA分類器的模糊規(guī)則前件。MA(Mamdani-Assilan)二分類器的模糊規(guī)則后件參數(shù)學(xué)習(xí)以加權(quán)分類錯誤平方最小化為目標(biāo)函數(shù),采用共軛梯度法求解后件參數(shù)。KEEL標(biāo)準(zhǔn)數(shù)據(jù)集中的12個10折交叉驗數(shù)據(jù)集的對比分類實驗驗證了該方法的有效性。
-
關(guān)鍵詞:
- 模糊規(guī)則 /
- 分類 /
- 約簡 /
- Mamdani-Assilan (MA) /
- 同類
Abstract: In order to improve the interpretability and effectiveness of the fuzzy classifier rules, this paper presents a new method to extract the fuzzy rules based on the maximum ball only containing the homogeneous data. At first, every sample constructs a maximum ball in the light of the shortest distance to heterogeneous samples. Then those balls are reduced according to the relation of inclusion and the unique among the samples that the ball encloses. Then the fuzzy rules are constructed with the reserved balls. The parameters learning of the antecedent part of the classifier are based on the minimization of the weight misclassification quadratic error and resolved with the conjugate gradient algorithm. The experiments on 12 benchmark datasets with 10 folds are performed to demonstrate the validity of the classifier.-
Key words:
- Fuzzy rule /
- Classifier /
- Reduction /
- Mamdani-Assilan (MA) /
- Homogeneous data
-
HARANDI F A and DERHAMI V. A reinforcement learning algorithm for adjusting antecedent parameters and weights of fuzzy rules in a fuzzy classifier[J]. Journal of Intelligent Fuzzy Systems, 2016, 30(4): 2339-2347. doi: 10.3233/IFS- 152004. JAMALABADI H, NASROLLAHI H, ALIZADEH S, et al. Competitive interaction reasoning: A bio-inspired reasoning method for fuzzy rule based classification systems[J]. Information Sciences, 2016, 352: 35-47. doi: 10.1016/ j.ins.2016.02.052. CINTRA M E, CAMARGO H A, and MONARD M C. Genetic generation of fuzzy systems with rule extraction using formal concept analysis[J]. Information Sciences, 2016, 349: 199-215. doi: 10.1016/j.ins.2016.02.026 POURPANAHA F, LIM C P, and MOHAMAD SALEHA J. A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction[J]. Expert Systems With Applications, 2016, 49: 74-85. doi: 10.1016/j.eswa. 2015.11.009. 李繼東, 張學(xué)杰. 基于遺傳算法的多維模糊分類器構(gòu)造的研究[J]. 軟件學(xué)報, 2005, 16(5): 779-785. LI J D and ZHANG X J. Research on the construction of fuzzy classifier system for multidimensional pattern classification using genetic algorithms[J]. Journal of Software, 2005, 16(5): 779-785. RUDZINSKI F. A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers[J]. Applied Soft Computing, 2016, 38: 118-133. doi: 10.1016/ j.asoc.2015.09.038. MARIAN B G and RUDZINSKI F. A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with balanced accuracy and interpretability[J]. Applied Soft Computing, 2016, 40: 206-220. doi: 10.1016/j.asoc.2015. 11.037. SHANGHOOSHABAD A M and ABADEH M S. Robust, interpretable and high quality fuzzy rule discovery using krill herd algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(3): 1601-1612. doi: 10.3233/IFS-151867 GARCA-GALN S, PARDO P R, and MUNOZ EXPSITO J E. Rules discovery in fuzzy classifier systems with PSO for scheduling in grid computational infrastructures[J]. Applied Soft Computing, 2015, 29: 424-435. doi: 10.1016/j.asoc.2014.11.064. WU Jue, YANG Lei, LI Tianrui, et al. Rule-based fuzzy classifier based on quantum ant optimization algorithm[J]. Journal of Intelligent Fuzzy Systems, 2015, 29 (6): 2365-2371. doi: 10.3233/IFS-151935. MAHDIZADEH M and EFTEKHARI M. Generating fuzzy rule base classifier for highly imbalanced datasets using a hybrid of evolutionary algorithms and subtractive clustering[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(6): 3033-3046. doi: 10.3233/IFS-141261. 邢宗義, 張永, 侯遠(yuǎn)龍, 等. 基于模糊聚類和遺傳方法的具備解釋性和精確性的模糊分類系統(tǒng)設(shè)計[J]. 電子學(xué)報, 2006, 34(1): 83-88. XING Zongyi, ZHANG Yong, HOU Yuanlong, et al. Design of interpretable and precise fuzzy classification system based on fuzzy clustering and genetic algorithm[J]. Acta Electronica Sinica, 2006, 34(1): 83-88. 王莉, 周獻(xiàn)中, 李華雄. 基于決策粗糙集的模糊分類模型[J]. 信息與控制, 2014, 43(1): 24-29. doi: 10.3724/SP.J.1219.2014. 00024. WANG Li, ZHOU Xianzhong, and LI Huaxiong. Fuzzy classification model based on decision-theoretic rough set[J]. Information and Control, 2014, 43(1): 24-29. doi: 10. 3724 /SP.J.1219.2014.00024. JACK M L. Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 802-812. doi: 10.1109/TFUZZ.2014.2327995 LESKI J M. Iteratively reweighted least squares classifier and is - and -regularized kernel versions[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58(1): 171-182. doi: 10.2478/v10175-010-0018-2. -
計量
- 文章訪問數(shù): 1051
- HTML全文瀏覽量: 102
- PDF下載量: 315
- 被引次數(shù): 0